Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy for treating cancer

05.09.2011
Using a strategy based on treating cancer cells that carry a specific genetic signature – hyper-expression of the protein Myc – with therapy that affects the stability of the cell’s DNA, more effective results can be achieved. This was discovered by Andreas Höglund in his dissertation to be publicly defended at Umeå University on September 9.

Today cancer is a public health disease that statistically afflicts every third Swede some time during their lifetimes. Although certain external factors such as smoking, obesity, and exaggerated sunbathing increase the risk of cancer, everyone can develop this disease, regardless of these factors.

This is because during our lifetime we gather mutations in our genes that govern how the body’s cells grow and multiply. Sometimes these mutations affect important cellular programs, entailing that a cell somewhere in the body receives a growth advantage that makes it grow and multiply until a tumor has been formed.

In his dissertation, Andreas Höglund shows that cancer cells that carry a specific genetic defect are extra susceptible to treatment that damages the cells’ DNA.

“Cancer cells that express the protein Myc at unnaturally high levels are extra sensitive to these types of treatment,” says Andreas Höglund.

Myc is a vital protein in the body that governs the reading of thousands of genes. Myc does not cause cancer until mutations lead to abnormally high levels of this protein, and further defense mechanisms are knocked out. Defective expression of Myc is one of the most common causes of cancer.

In the dissertation studies Andreas Höglund also maps signalling paths that govern the cell’s ability to recognize and repair damaged DNA. In collaboration with pharmacuetical companies, small chemical compounds have been tested in the hope of being able to develop these beyond a preclinical setting. By steering the binding of these compounds to precisely those signal paths that govern the cell’s ability to recognize and repair DNA damage, it was possible to neutralize the cancer cells.

“Directing treatment toward the signal paths we have identified is highly appropriate for cancer cells with high Myc levels. The hope is to be able to use the Myc signature in a number of cancer diseases in order to attain more specific treatment, which also has the potential of reducing side effects in comparison with current treatment methods,” says Andreas Höglund.

Andreas Höglund was born and raised in Härnösand, where he majored in science in high school, graduating in 1999. In 2001 he started the master’s program in biotechnology at Umeå University, finishing in 2006.

About the public defense
On Friday, September 9, Andreas Höglund, Department of Molecular Biology, Umeå University, will publicly defend his dissertation titled: Regulation of DNA damage responses by the MYC oncogene – Implications for future anti-cancer therapies.

The external examiner is Professor Thomas Helleday, Department of Genetics, Microbiology, and Toxicology, Stockholm University, Stockholm, Sweden and Gray Institute for Radiation and Biology, Oxford University, UK.

For further information, please contact:
Andreas Höglund, Department of Molecular Biology
Mobile phone: +46 (0)70-264 44 94
E-mail: andreas.hoglund@molbiol.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.vr.se
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-44284

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>