Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy Developed to Improve Delivery of Medicines to the Brain

10.09.2012
NIH researchers use rodent study to uncover novel approach

New research offers a possible strategy for treating central nervous system diseases, such as brain and spinal cord injury, brain cancer, epilepsy, and neurological complications of HIV.

The experimental treatment method allows small therapeutic agents to safely cross the blood-brain barrier in laboratory rats by turning off P-glycoprotein, one of the main gatekeepers preventing medicinal drugs from reaching their intended targets in the brain.

The findings appeared online Sept. 4 in the Proceedings of the National Academy of Sciences, and is the result of a study from scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health.

“Many promising drugs fail because they cannot cross the blood-brain barrier sufficiently to provide a therapeutic dose to the brain,” said David Miller, Ph.D., head of the Laboratory of Toxicology and Pharmacology at NIEHS, and leader of the team that performed the study. “We hope our new strategy will have a positive impact on people with brain disorders in the future.”

In a two-pronged approach, the research team first determined that treating rat brain capillaries with the multiple sclerosis drug marketed as Gilenya (fingolimod) stimulated a specific biochemical signaling pathway in the blood-brain barrier that rapidly and reversibly turned off P-glycoprotein. Team members then pretreated rats with fingolimod, and administered three other drugs that P-glycoprotein usually transports away from the brain. They observed a dramatic decline in P-glycoprotein transport activity, which led to a threefold to fivefold increase in brain uptake for each of the three drugs.

Ronald Cannon, Ph.D., is a staff scientist in the Miller lab and first author on the paper. He said one of the burning questions the team wants to tackle next is to understand how the signaling system turns off P-glycoprotein. He equates the mechanism to what happens when a person flips a light switch.

“If you physically turn off a light using the button on the wall, the light will go out because the electrical current to the light bulb has been interrupted,” Cannon explained. “But what happens when the signaling pathway shuts down P-glycoprotein? Does it bring in another protein to bind to the pump, take away its energy source, modify the structure of the pump, or something else?”

Cannon said the paper’s findings open a new way of thinking regarding targets for drug design, a thought that is emotionally gratifying for him and many other researchers whose scientific discoveries generally don’t directly translate into helping people with illnesses.

“Although much more research needs to be done, delivering therapeutics to the central nervous system is one of the final frontiers of pharmacotherapy, Cannon added.”

NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit http://www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (http://www.niehs.nih.gov/news/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health ®

Reference: Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS. 2012. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci U S A; doi:10.1073/pnas.1203534109 [Online 4 September 2012].

Robin Arnette | Newswise Science News
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A new tool for discovering nanoporous materials

23.05.2017 | Materials Sciences

Two New Giants Discovered in Tiny Madagascar Rainforest

23.05.2017 | Life Sciences

Did you know that packaging is becoming intelligent through flash systems?

23.05.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>