Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy developed to diagnose melanoma

01.04.2009
A UCSF research team has developed a technique to distinguish benign moles from malignant melanomas by measuring differences in levels of genetic markers.

Standard microscopic examinations of biopsied tissue can be ambiguous and somewhat subjective, the researchers say, and supplementing standard practice with the new technique is expected to help clarify difficult-to-diagnose cases.

In a large study of previously diagnosed cases, the new technique distinguished between benign, mole-like skin lesions and melanomas with a success rate higher than 90 percent. It also succeeded with most of the previously misdiagnosed cases, which were among the most difficult to distinguish.

This is the first large-scale study to demonstrate both the high diagnostic accuracy and practicality of a multi-biomarker approach to melanoma diagnosis, said Mohammed Kashani-Sabet, MD, professor of dermatology at UCSF and director of the Melanoma Center at the UCSF Helen Diller Family Comprehensive Cancer Center.

Kashani-Sabet is lead author on a paper reporting the new finding in the Proceedings of the National Academy of Sciences, which is scheduled for online publication the week of March 30, 2009. The paper also will appear in a future print issue of PNAS.

Melanoma is the deadliest form of skin cancer. It can spread to almost any organ of the body and is difficult to treat in its advanced stages. Progress in survival rates has been made principally through earlier diagnosis. The genomics-based approach combined with current diagnostic practice can aid earlier detection and contribute to more accurate assessment, report the UCSF scientists who developed the diagnostic tool.

The molecular diagnosis strategy is now being developed for clinical use by a diagnostics company.

To develop the diagnostic tool, the researchers first used a microarray – a "gene chip" -- to identify about 1,000 human genes that were present at different levels in malignant melanomas compared to benign moles. They narrowed their study down to five genes that all showed higher levels of activity in melanomas than in moles and could be studied with standard antibody techniques.

Focusing on the proteins produced by the five genes, they stained the proteins with antibodies to assess the level of gene expression in mole and melanoma tissues. The new diagnostic technique distinguished moles from melanomas by differences in both the level and the pattern of activity of the five proteins.

To develop and test the diagnostic technique, the researchers examined levels of the five biomarkers in 693 previously diagnosed tissue samples. To ensure that the diagnosis based on tissue examination had been correct, all samples were reviewed by the study's pathologist. They analyzed the samples with the new procedure and found that the increased protein production by the melanomas compared with the moles was statistically significant, and thus a reliable diagnostic indicator. Unexpectedly, the proteins also showed different patterns of activity in the two types of tissue, yielding a second, even more discriminating diagnostic indicator.

"We hoped for clear diagnostic differences in the intensity of gene expression," Kashani-Sabet said. "We found what we had hoped for, but then we got a bonus. The pattern of protein activity from the top to the bottom of the tissue was strikingly different between the benign and the malignant tissue, providing an additional trait valuable for diagnosis."

Although some of the genes and their proteins were stronger indicators than others, the research team found that the combination of all five achieved the highest diagnostic accuracy. The multi-biomarker diagnostic correctly diagnosed 95 percent of the benign moles -- a measure known as specificity. The accuracy rate was 91 percent for diagnosing malignant melanomas – the sensitivity rate. In addition, the strategy correctly diagnosed 75 percent of the most difficult cases, which had previously been misdiagnosed. The technique also accurately diagnosed other difficult-to-diagnose moles, known as dysplastic and Spitz nevi.

"We have a test that can help patients and help clinicians who treat melanoma," said Kashani-Sabet. "With this added diagnostic tool we can shed light on lesions that are difficult to classify and diagnose."

Co-authors on the paper and collaborators in the research, all at UCSF, are Javier Rangel, MD, resident in dermatology; Mehdi Nosrati, BS, staff research assistant; and Sima Torabian, MD, a former post-doctoral research fellow in the Kashani-Sabet lab.

Also, Jeff Simko, MD, associate professor of clinical pathology; Chris Haqq, MD, PhD, assistant adjunct professor of urology; James Miller, PhD, statistical consultant; Richard Sagebiel, MD, professor of dermatology and pathology; Dan Moore, PhD, statistical consultant; and David Jablons, MD, professor of surgery.

A patent has been filed by UCSF covering the use of these five genetic markers in melanoma diagnosis. The patent has been licensed to Melanoma Diagnostics, based in Fremont, Calif. Lead author Kashani-Sabet owns stock in this company. Co-author Miller has an ownership interest in MDMS, a software company in Arizona that provided the software to generate diagnostic algorithms.

The research was supported by the Auerback Melanoma Research Fund, the Herschel and Diana Zackheim Endowment Fund, the American Cancer Society and the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Susan Cohen | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>