Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies for treatment of infectious diseases

24.02.2012
Article in journal Science proposes new look on killer diseases

The immune system protects from infections by detecting and eliminating invading pathogens. These two strategies form the basis of conventional clinical approaches in the fight against infectious diseases.

In the latest issue of the journal Science, Miguel Soares from the Instituto Gulbenkian de Ciência (Portugal) together with Ruslan Medzhitov from Yale University School of Medicine and David Schneider from Stanford University propose that a third strategy needs to be considered: tolerance to infection, whereby the infected host protects itself from infection by reducing tissue damage and other negative effects caused by the pathogen or the immune response against the invader. The authors argue that identifying the mechanisms underlying this largely overlooked phenomenon may pave the way to new strategies to treat many human infectious diseases.

Upon invasion by pathogens (bacteria, viruses or parasites), the immune system kicks into action, by detecting, destroying and ultimately eliminating the pathogen. This so-called "resistance to infection" is crucial in protecting the host from infection, but is often accompanied by collateral damage to some of the host's vital tissues (liver, kidney, heart, brain).

If uncontrolled tissue damage may have lethal consequences, as often happens, for example, in severe malaria, severe sepsis and possibly other infectious diseases. Tolerance reduces the harmful impact of infection and of the ensuing immune response on the host.

Although a well-studied phenomenon in plant immunity, tolerance to infection has been largely overlooked in mammals, including humans. While there is still much to be learnt about how and under which circumstances tolerance to infection is employed by the host, most of what is currently known about the molecular mechanisms underlying this host defense strategy comes from work carried out at the Instituto Gulbenkian de Ciência by the group led by Miguel Soares.

The team is particularly interested in identifying disease-specific tolerance mechanisms, on the one hand, and also general strategies of tolerance, that may, possibly, be employed protectively, to precondition the host to future infections.

Because resistance is, generally, the only mechanism considered in animal and human studies, when the host capitulates to infection it is often attributed to failure of the immune system.

The authors argue that this is not always the case, and underscore the importance of distinguishing between failed resistance and failed tolerance as the cause for morbidity and mortality by infectious diseases. This distinction will dictate the choice of therapeutic approaches.

When the primary problem is failed tolerance, then boosting the immune system, or administering antibiotics, may be ineffective. In this case, enhancing tolerance would possibly be much more effective in fighting infectious, inflammatory and auto-immune diseases.

Ana Godinho | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>