Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How one strain of MRSA becomes resistant to last-line antibiotic

22.05.2012
Researchers have uncovered what makes one particular strain of methicillin-resistant Staphylococcus aureus (MRSA) so proficient at picking up resistance genes, such as the one that makes it resistant to vancomycin, the last line of defense for hospital-acquired infections. They report their findings in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday May 22.

"MRSA strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains," write the researchers from Harvard, the Massachusetts Eye and Ear Infirmary in Boston and the Broad Institute in Cambridge and other institutions. "Vancomycin is a key last-line bactericidal drug for treating these infections."

The CC5 strain of MRSA has managed to acquire resistance to vancomycin on 12 separate occasions, and although it hasn't spread widely yet, the risk that MRSA could eventually overwhelm even our last-line drugs is a very serious one. In the study, the researchers sequenced the genomes of all available vancomycin-resistant MRSA strains to find what distinguishes them from other lineages and why CC5 is apparently more adept than other strains at picking up vancomycin resistance.

They report that vancomycin-resistant MRSA strains and other CC5 lineages have some important differences from other types of MRSA, including adaptations that allow them to co-exist with other types of bacteria and may help them take up foreign DNA. They all lack the operon called bsa, for instance, a set of genes that encode a lantibiotic bacteriocin, an antibiotic protein made by bacteria to kill other bacteria. This is important, say the authors, because it enables CC5 to get along well with other bacteria in mixed infections. Instead of killing off competing organisms, CC5 aims to co-exist. This enables it to pick up genes - like the one that encodes vancomycin resistance - from unexpected places. Mixed infections are breeding grounds for antibiotic resistance because they encourage the exchange of genes among very different kinds of organisms.

In roughly the place where these bacteriocin genes are missing is a unique cluster of genes that encode enterotoxins, proteins that attack the human host and, again, could make it easier for mixed populations of bacteria to grow at infection sites.

Finally, CC5 has a mutation in a gene called dprA, which is known to influence the ability to assimilate foreign DNA. The mutation could alter or eliminate the function of dprA in CC5 strains of MRSA, making it amenable to taking up DNA from outside sources.

The sum of all these traits, including the lack of bacteriocin production, the ability to produce enterotoxins, and mutations in the ability to assimilate foreign DNA, is a lineage of S. aureus that is optimized to grow in exactly the types of multi-species infections where gene transfer could occur.

This makes CC5 a dangerous organism in hospitals, say the authors. In hospitals, pathogens are under continuous pressure from antibiotics to survive and evolve, and CC5 isolates appear to be very well adapted to succeed by acquiring new resistances. Frequent use of antibiotics in hospital patients could select for strains like CC5 that have an enhanced ability to co-exist with bacteria that provide genes for antibiotic resistance.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>