Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How one strain of MRSA becomes resistant to last-line antibiotic

22.05.2012
Researchers have uncovered what makes one particular strain of methicillin-resistant Staphylococcus aureus (MRSA) so proficient at picking up resistance genes, such as the one that makes it resistant to vancomycin, the last line of defense for hospital-acquired infections. They report their findings in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday May 22.

"MRSA strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains," write the researchers from Harvard, the Massachusetts Eye and Ear Infirmary in Boston and the Broad Institute in Cambridge and other institutions. "Vancomycin is a key last-line bactericidal drug for treating these infections."

The CC5 strain of MRSA has managed to acquire resistance to vancomycin on 12 separate occasions, and although it hasn't spread widely yet, the risk that MRSA could eventually overwhelm even our last-line drugs is a very serious one. In the study, the researchers sequenced the genomes of all available vancomycin-resistant MRSA strains to find what distinguishes them from other lineages and why CC5 is apparently more adept than other strains at picking up vancomycin resistance.

They report that vancomycin-resistant MRSA strains and other CC5 lineages have some important differences from other types of MRSA, including adaptations that allow them to co-exist with other types of bacteria and may help them take up foreign DNA. They all lack the operon called bsa, for instance, a set of genes that encode a lantibiotic bacteriocin, an antibiotic protein made by bacteria to kill other bacteria. This is important, say the authors, because it enables CC5 to get along well with other bacteria in mixed infections. Instead of killing off competing organisms, CC5 aims to co-exist. This enables it to pick up genes - like the one that encodes vancomycin resistance - from unexpected places. Mixed infections are breeding grounds for antibiotic resistance because they encourage the exchange of genes among very different kinds of organisms.

In roughly the place where these bacteriocin genes are missing is a unique cluster of genes that encode enterotoxins, proteins that attack the human host and, again, could make it easier for mixed populations of bacteria to grow at infection sites.

Finally, CC5 has a mutation in a gene called dprA, which is known to influence the ability to assimilate foreign DNA. The mutation could alter or eliminate the function of dprA in CC5 strains of MRSA, making it amenable to taking up DNA from outside sources.

The sum of all these traits, including the lack of bacteriocin production, the ability to produce enterotoxins, and mutations in the ability to assimilate foreign DNA, is a lineage of S. aureus that is optimized to grow in exactly the types of multi-species infections where gene transfer could occur.

This makes CC5 a dangerous organism in hospitals, say the authors. In hospitals, pathogens are under continuous pressure from antibiotics to survive and evolve, and CC5 isolates appear to be very well adapted to succeed by acquiring new resistances. Frequent use of antibiotics in hospital patients could select for strains like CC5 that have an enhanced ability to co-exist with bacteria that provide genes for antibiotic resistance.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>