Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping Schizophrenia Before It Starts?

29.01.2010
New TAU study shows early intervention could prevent mind altering disorder

The onset of schizophrenia is not easy to predict. Although it is associated with as many as 14 genes in the human genome, the prior presence of schizophrenia in the family is not enough to determine whether one will succumb to the mind-altering condition. The disease also has a significant environmental link.

According to Prof. Ina Weiner of Tel Aviv University’s Department of Psychology, the developmental disorder, which usually manifests in early adulthood, can be triggered in the womb by an infection. But unlike developmental disorders such as autism, it takes many years for the symptoms of schizophrenia to develop.

"Pharmacological treatments for schizophrenia remain unsatisfactory, so clinicians and researchers like myself have started to dig in another direction," says Prof. Weiner. "The big question asked in recent years is if schizophrenia can be prevented."

Revolutionizing the treatment

In their study, recently reported in Biological Psychiatry, Prof. Weiner and her colleagues Dr. Yael Piontkewiz and Dr. Yaniv Assaf sought to discover biological cues that would help trace the progression of the disease before symptoms manifested. "If progressive brain changes occur as schizophrenia is emerging, it is possible that these changes could be prevented by early intervention," she says. "That would revolutionize the treatment of the disorder.

"We wondered if we could use neuro-imaging to track any early-onset changes in the brains of laboratory animals," Prof. Weiner says. "If so, could these changes and their accompanying schizophrenia-like symptoms be prevented if caught early enough?"

Beyond a doubt

Prof. Weiner and her team gave pregnant rats a viral mimic known to induce a schizophrenia-like behavioral disorder in the offspring. This method simulates maternal infection in pregnancy, a well known risk factor for schizophrenia. Prof. Weiner demonstrated that the rat offspring were normal at birth and during adolescence. But in early adulthood, the animals, like their human counterparts, began to show schizophrenia-like symptoms.

Looking at brain scans and behavior, Prof. Weiner found abnormally developing lateral ventricles and the hippocampus in those rats with "schizophrenia." Those that were at high risk for the condition could be given drugs to treat their brains, she determined. Following treatment with risperidone and clozapine, two commonly used drugs to treat schizophrenia, brain scans showed that the lateral ventricles and the hippocampus retained a healthy size.

"Clinicians have suspected that these drugs can be used to prevent the onset of schizophrenia, but this is the first demonstration that such a treatment can arrest the development of brain deterioration," says Prof. Weiner. She says that the drugs work best when delivered during the rats' "adolescent" period, several months before they reached full maturity.

Now, anti-psychotics are prescribed only when symptoms are present. Prof. Weiner believes that an effective non-invasive prediction method (looking at the developmental trajectory of specific changes in the brain), coupled with a low dose drug taken during adolescence, could stave off schizophrenia in those most at risk.

More research is needed to see at what point changes in the brain can be detected, work that Prof. Weiner has already begun. She adds that the neuroimaging was performed in the Alfredo Federico Strauss Center for Computational Neuro-Imaging, Raymond and Beverly Sackler Center for Biophysics, Tel Aviv University.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>