Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulation of brain hormone action may improve pneumonia survival

31.01.2012
An international research team may have found a way to block a second wave of death that can result from pneumonia treatment.

Antibiotics are effective at killing pneumococcus – the cause of about 50 percent of pneumonias – but as it dies the bacterium releases potentially lethal toxins.

Adding an agonist that mimics the action of growth hormone-releasing hormone – which ultimately enables growth – may stop that second wave, according to research published in the Proceedings of the National Academy of Sciences.

"You have to take antibiotics, if you don't, the bugs will grow and you most likely will die anyway," said Dr. Rudolf Lucas, vascular biologist at the Medical College of Georgia at Georgia Health Sciences University.

Problems start when a bacterium that causes pneumonia, in this case pneumococcus, is inhaled. Symptoms include mucus buildup, cough, fever, chills and shortness of breath. Antibiotics are the front line treatment to kill the infection.

An unfortunate result of bacterium death is release of pneumolysin, a toxin that can trigger formation of holes in the walls of the millions of tiny air sacs and blood vessels in the lungs. The result is that fluid, blood and other products find their way into air sacs that were intended for oxygen exchange.

"It's like making a hole in a bucket," said Lucas. He and Dr. Andrew V. Schally, Distinguished Leonard M. Miller Professor of Pathology & Professor of Hematology/Oncology at the University of Miami Miller School of Medicine, are co-corresponding authors on the study.

Pneumolysin naturally binds to cholesterol, a component of all cell membranes including cells lining the air sacs, or alveoli. Once attached to the membrane, the toxin produces complexes that make holes in the membranes of the air sacs before escaping to do similar damage to nearby capillaries. While the close proximity of capillaries normally enables air sacs to replenish blood with oxygen and to remove carbon dioxide, the now open exchange enables fluid and cells from the capillaries to penetrate air sacs as well as the space in between them. To make matters worse, the toxin also blocks a protective sodium uptake system in the lungs that can help remove fluids. Within a few days, the patient is back in jeopardy. "These patients are being treated with an antibiotic and aggressive intensive care support and they (can) still die," Lucas said.

Schally, a Nobel Prize recipient for his discovery of hypothalamic hormones and Head of The Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center in Miami, developed the agonist that may one day make the difference for these patients. The agonist was previously shown to help protect heart muscle in the aftermath of a heart attack.

Surprisingly, GHSU scientists detected receptors for growth hormone releasing hormone in cells lining the air sacs. Typically, growth hormone-releasing hormone is produced by the hypothalamus then goes to the pituitary which makes and releases growth hormone. "We were asking ourselves, what is it doing there?" Lucas said.

They got a clue when they applied the agonist to the growth hormone-releasing hormone in an animal model of pneumonia as well as human lung cells in culture: leaking was significantly reduced and beneficial sodium uptake was restored. Conversely, when they applied a hormone antagonist – to block its action – lung cells became leaky even without toxin exposure, further indicating the hormone's apparent role in protecting the lining of the air sacs and capillaries.

"This is an acute problem; dangerous lung fluid accumulation occurs within days in patients," said Lucas who anticipates the agonist, or a compound with a similar function, could someday be given to patients in those first few critical days to avoid the second onslaught.

As a result of the findings, extensive collaborative studies are being planned on the use of growth hormone-releasing hormone agonists to prevent edema in patients with bacterial pneumonia. Next steps include pursing a National Institutes of Health grant with Dr. Michael A. Matthay, Senior Associate, Cardiovascular Research Institute, University of California, San Francisco, to support more studies that include an isolated human lung model and a preclinical model of laboratory animals who follow the same course as patients: they are infected with the bacterium then given an antibiotic. In the model for the PNAS study, scientists gave the resulting toxin directly.

Dr. Trinad Chakraborty, Dean of the Faculty of Medicine at the University of Giessen in Germany, developed the purified toxin used for the study. Study co-authors Dr. Richard White, GHSU pharmacologist, showed restoration of sodium uptake, and Dr. Supriya Sridhar, GHSU research associate, performed the cell permeability experiments. University of Miami co-authors included Dr. Norman L. Block, Professor of Pathology, Urology, Oncology and Biomedical Engineering, as well as Dr. Ferenc G. Rick, Assistant Research Professor of Pathology.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>