Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stiffer breast tissue in obese women promotes tumors

27.08.2015

Women who are obese have a higher risk and a worse prognosis for breast cancer, but the reasons why remain unclear. A Cornell study published this month in Science Translational Medicine explains how obesity changes the consistency of breast tissue in ways that are similar to tumors, thereby promoting disease.

The study of mice and women shows obesity leads to a stiffening of a meshwork of material that surrounds fat cells in the breast, called the extracellular matrix, and these biomechanical changes create the right conditions for tumor growth.


Lean vs. obese tissue is shown.

Credit: Cornell University

The findings suggest clinicians may need to employ finer-scale imaging techniques in mammograms, especially for obese women, to detect a denser extracellular matrix. Also, the results should caution doctors against using certain fat cells from obese women in plastic and reconstructive breast surgeries, as these cells can promote recurring breast cancer.

"We all know that obesity is bad; the metabolism changes and hormones change, so when looking for links to breast cancer, researchers almost exclusively have focused on the biochemical changes happening. But what these findings show is that there are also biophysical changes that are important," said Claudia Fischbach, associate professor of biomedical engineering and the paper's senior author. Bo Ri Seo, a graduate student in Fischbach's lab, is the paper's first author.

The study is a collaboration between Cornell's Ithaca campus and researchers at Weill Cornell Medical College and includes Dr. Andrew Dannenberg, professor of medicine.

Fat tissue in obese women has more cells called myofibroblasts, compared with fat tissue in normal-weight women. Myofibroblasts are wound-healing cells that determine whether a scar will form. All cells secrete compounds to create an extracellular matrix, and they remodel and grab onto this meshwork to make tissue. But when myofibroblasts make an extracellular matrix, they pull together - the action needed to close a wound - stiffening the tissue.

But "these are cells in our body regardless of injury," said Fischbach. In obese women, there are more myofibroblasts than in lean women, which leads to scarring and stiffening without an injury in the extracellular matrix. Tumors also recruit more myofibroblasts than are found in healthy tissue, which also leads to stiffer extracellular matrix.

Many obese women get regular mammograms but signs of disease don't show up because detecting their dense extracellular matrix between the fat cells requires a finer-scale resolution. The findings "may inspire use of higher resolution imaging techniques to detect those changes," said Fischbach. "Right now, people don't look for stiffer extracellular matrices as a clinical biomarker."

During plastic or reconstructive surgery following mastectomy in breast cancer patients, doctors may inject adipose stromal cells from obese donors to regenerate tissue. "What our data suggests is that it is really important where these cells are being taken from," Fischbach said. "If you use these cells from an obese patient, they are very different and you may actually be driving malignancies if you implant them."

###

The study was funded by the National Institutes of Health, the National Science Foundation, the Breast Cancer Research Foundation and the Botwinick-Wolfensohn Foundation at WCMC.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Melissa Osgood
mmo59@cornell.edu
607-255-2059

 @cornell

http://pressoffice.cornell.edu 

Melissa Osgood | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>