Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell transplants help kidney damage

15.02.2011
Transplanting autologous renal progenitor cells (RPCs), (kidney stem cells derived from self-donors), into rat models with kidney damage from pyelonephritis - a type of urinary infection that has reached the kidney - has been found to improve kidney structure and function.

The study, authored by a research team from the Tehran University of Medical Sciences, is published in the current issue of Cell Medicine [1(3)] and is freely available on-line at: http://www.ingentaconnect.com/content/cog/cm .

"Advancements in stem cell therapies and tissue engineering hold great promise for regenerative nephrology," said Dr. Abdol-Mohammad Kajbafzadeh, corresponding author. "Our RPC transplant study demonstrated benefits for pyelonephritis, a disease characterized by severe inflammation, renal function impairment and eventual scarring, and which remains a major cause of end-stage-renal disease worldwide."

The researchers divided 27 rats into three groups, two of which were modeled with an induced pyelonephritis in their right kidneys, while the third group did not have induced disease. RPCs were obtained from the diseased animals' left kidneys and injected into the right kidney six weeks later. Two weeks after injection, tubular atrophy was reduced. After four weeks, fibrosis was reduced and after sixty days, right renal tissue integrity was "significantly improved."

"We propose that kidney augmentation was mainly due to functional tissue regeneration following cellular transplantation," said Dr. Kajbafzadeh. "Kidney-specific stem/progenitor cells might be the most appropriate candidates for transplantation because of their inherent organ-specific differentiation and their capacity to modulate tissue remodeling in chronic nephropathies."

The researchers concluded that because renal fibrosis is a common and ultimate pathway leading to end-stage renal disease, amelioration of fibrosis might be of major clinical relevance.

"Transplanting RPCs showed the potential for partial augmentation of kidney structure and function in pyelonephritis," said Dr. Kajbafzadeh. "This is one of the first studies to demonstrate improved renal function after cell transplantation. The translation of this study into larger clinical models will be very relevant to validate the success of this small animal study." said Dr. Amit Patel, Section Editor Cell Medicine, Associate Professor of Surgery, University of Utah.

Citation. Kajbafzadeh, A-M.; Elmi, A.; Talab, S. S.; Sadeghi, Z.; Emami, H.; Sotoudeh, M. Autografting of Renal Progenitor Cells Ameliorates Kidney Damage in Experimental Model of Pyelonephritis. Cell Med. 1(3): 115-122; 2010.

Contact: Dr. Abdol-Mohammed Kajbafzadeh, No. 36, 2nd floor, 7th St., Saabat-Abad Ave. Tehran 1998714616 Iran.

Tel: +98 21 2208 9946 Fax: +98 21 2206 9451 Email: kajbafzd@sina.tums.ac.ir

The editorial offices for Cell Medicine are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida. Contact, David Eve, PhD. at cellmedicinect@gmail.com

News Release by Randolph Fillmore, Florida Science Communications.

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/cm

Further reports about: Brain Repair Stem cell innovation cell death renal disease

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>