Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell transplants: activating signal paths may protect from graft-versus-host disease

20.04.2017

Stem cell transplants can save lives, for example in patients with leukemia. However, these treatments are not free of risks. One complication that may occur is graft-versus-host disease (GVHD), basically donor-derived immune cells attacking the recipient’s body. A team at the Technical University of Munich (TUM) has identified molecular mechanisms that may protect patients against this dangerous response in the future. The key to preventing GVHD is in the gut.

In order to enable foreign stem cells to multiply in the body and produce healthy blood cells, doctors first need to make room for them. This is achieved by destroying existing cells in the bone marrow using drugs or radiation.


A team led by PD Dr. Hendrik Poeck (center) and Dr. Tobias Haas has developed a new approach to protect patients from graft-versus-host disease. First author Julius Fischer is seen in the back.

Benz /TUM Verwendung frei für Berichterstattung über die TU München unter Nennung des Copyrights / Free for use in reporting on TU München with the copyright noted.


Cross-section of mouse intestines: OLFM4-stem cells (red) are crucial for epithel regeneration. During treatment leading up to allo-hematopoietic stem cell transplantation, they are often destroyed.

Poeck / TUM Verwendung frei für Berichterstattung über die TU München unter Nennung des Copyrights / Free for use in reporting on TU München with the copyright noted.

One of the risks resulting from this pre-treatment is GVHD, which occurs in about half of all treatments. In simple terms, during GVHD the transplanted stem cells become T lymphocytes. These immune cells, which are supposed to fight intruders such as bacteria, take a wrong turn and start attacking the recipient’s already weakened body.

In a paper published in the journal Science Translational Medicine, an international team headed by TUM adjunct teaching professor Dr. Hendrik Poeck and Dr. Tobias Haas, heads of a research group at the third medical clinic of TUM's Klinikum rechts der Isar, and Professor Marcel van den Brink at the Memorial Sloan Kettering Cancer Center (MSKCC) in New York City, describes how this process could be prevented.

Triggered in the gut

The attacks by the T cells primarily affect the skin, liver and in particular the gastrointestinal tract. The intestine is believed to be the key organ where GVHD starts. The drug treatment and radiation cause damage to the epithelial cells, which form part of the intestinal mucosal layer. Stress signals emitted by the dying epithelial cells and the arrival of intestinal bacteria in the previously germ-free areas of the gut due to the loss of the epithelium trigger a sort of red alert that activates aggressive donor T cells. "If the epithelium could be protected or quickly restored, the risk of an immune response would be much lower," says Hendrik Poeck. "Up to now, however, there have been very few treatment strategies that seek to regenerate the epithelium."

The scientists working with Dr. Poeck studied two proteins produced naturally in the body and known for their role in fighting bacteria and viruses: RIG-I and STING. "We were able to demonstrate for the first time that both of them can also be used to bring about a regenerative effect," says Julius Fischer, first author of the study. Both proteins are part of signal chains that cause type I interferon (IFN-I) to be produced. IFN-I triggers many different immune responses, but can also speed up the replacement of epithelial cells.

Timing is key

It is well established that the RIG-I signal pathway can be deliberately stimulated using triphosphate-RNA (3pRNA). Poeck and his team were able to demonstrate in mice that 3pRNA can indeed protect the epithelial cells. The timing is decisive: Measurable protection was only seen when the 3pRNA was administered exactly one day before the start of radiation and drug treatment. "We assume that after just one day of treatment, there would no longer be enough intact epithelial cells in the gut for the RIG-I/IFN signal path to function," explains Tobias Haas. Although fewer activated T cells were generated after a treatment with 3pRNA, the positive effect of the leukemia therapy was not reduced to a measurable degree.

"Both RIG-I agonists, such as 3pRNA, and STING agonists are currently in clinical development," says Hendrik Poeck. The research points to a wide range of potential applications, especially in the treatment of tumors. "Our study shows that regenerative processes can also be triggered through selective activation of these signal paths," adds Poeck, explaining his team's results. "It thus appears quite possible that these selective agonists will be administered in the future to patients who are candidates for allogeneic stem cell transplants. However, further studies will be needed to learn how they actually work before applications in human medicine are possible."

Publication:

J. C. Fischer, M. Bscheider, G. Eisenkolb, C.-C. Lin, A. Wintges, V. Otten, C. A. Lindemans, S. Heidegger, M. Rudelius, S. Monette, K. A. Porosnicu Rodriguez, M. Calafiore, S. Liebermann, C. Liu, S. Lienenklaus, S. Weiss, U. Kalinke, J. Ruland, C. Peschel, Y. Shono, M. Docampo, E. Velardi, R. Jenq, A. M. Hanash, J. A. Dudakov, T. Haas, M. R.M. van den Brink and H. Poeck. "RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury". Science Translational Medicine (2017). 9:386. DOI: 10.1126/scitranslmed.aag2513

Further Information:

The research group's website:
http://www.med3.med.tum.de/forschung/Grundlagenforschung/Tumorimmunologie/haaspo...

Contact:

PD Dr. med. Hendrik Poeck
Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie
Klinikum Rechts der Isar
Technische Universität München
Tel: +49 (0) 89 4140 8065
Email: hendrik.poeck@tum.de

High-resolution images:

https://mediatum.ub.tum.de/1356990

Dr. Ulrich Marsch | Technische Universität München

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>