Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statin, osteoporosis drug combo may help treat parasitic infections

18.10.2013
Researchers at the University of Georgia have discovered that a combination of two commonly prescribed drugs used to treat high cholesterol and osteoporosis may serve as the foundation of a new treatment for toxoplasmosis, a parasitic infection caused by the protozoan Toxoplasma gondii. They published their findings recently in PLOS Pathogens.

Toxoplasma gondii is a parasite capable of infecting nearly all warm-blooded animals. While healthy human adults usually suffer no lasting ill effects from infection, it can be harmful or fatal to unborn fetuses or those with weakened immune systems.

"For many years, therapies for toxoplasmosis have focused on drugs that target only the parasite," said Silvia Moreno, senior author of the article and professor of cellular biology in UGA's Franklin College of Arts and Sciences. "But in this paper, we show how we can hit the parasite with two drugs simultaneously, one that affects body chemistry in the host and one that affects the parasite."

The UGA researchers discovered that a combination of the cholesterol lowering drug atorvastatin and osteoporosis medication zoledronic acid, both more commonly known by their respective trade names, Lipitor and Zometa, produce changes in the mammalian host and in the parasite that ultimately block parasite replication and spread of the infection.

"These two drugs have a strong synergy," said Moreno, who is also a member of UGA's Center for Tropical and Emerging Global Diseases. "The mice we treated were cured from a lethal infection using this combination approach."

Moreno and her colleagues began working on this drug combination following a series of experiments with unexpected results. They created a genetically modified version of the parasite in the laboratory that lacked a specific enzyme essential for one of the organism's most basic functions.

They thought such an experiment was an excellent opportunity to observe how the absence of this enzyme would kill the parasites. But every time they checked on the supposedly defective parasites, they were healthy and appeared completely unaffected.

"We kept asking ourselves, 'How did this happen? This enzyme should be essential to the parasite's survival,'" said Zhu-Hong Li, a UGA research scientist and lead author of the article. "It's almost like a human surviving without food or air."

What they discovered is that in order to survive, Toxoplasma has evolved an extraordinary ability to siphon essential compounds from its host when it is unable to make them on its own. This led them to the two-drug therapy.

Zoledronic acid prevents synthesis in the parasite and atorvastatin inhibits production in the host.

When Toxoplasma cannot produce these important molecules itself or steal them from its host, the parasites die.

"These drugs have been studied extensively, they are FDA-approved and safe for most people," Moreno said. "Plus, one might not have to take the drugs for an extended period, just long enough to clear the infection."

Moreno cautions that more research must be done before this becomes an accepted treatment for humans, but she hopes that a similar strategy might work for other serious parasitic diseases, such as malaria and cryptosporidiosis.

Early experiments with an anti-malarial drug already suggest that combining atorvastatin with fosmidomycin, an antibiotic effective against malaria parasites, creates a more potent antimalarial cocktail and it may lessen the risk of drug resistance.

UGA Center for Tropical and Emerging Global Diseases

The University of Georgia Center for Tropical and Emerging Global Diseases draws on a strong foundation of parasitology, immunology, cellular and molecular biology, biochemistry and genetics to develop medical and public health interventions for at-risk populations. Established in 1998, the center promotes international biomedical research and educational programs at UGA and throughout Georgia to address the parasitic and other tropical diseases that continue to threaten the health of people throughout the world. For more information about the center, see ctegd.uga.edu

Writer:
James Hataway, 706-542-5222, jhataway@uga.edu
Contact:
Silvia Moreno, 706-542-4736, smoreno@uga.edu

Silvia Moreno | EurekAlert!
Further information:
http://www.uga.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>