Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford device could reduce surgical scarring

23.05.2011
Researchers at Stanford University have developed a special wound dressing that they report was able to significantly reduce scar tissue caused by incisions.

Results of animal tests and of an early clinical trial of the dressing were "stunning," said Michael Longaker, MD, MBA, the Deane P. and Louise Mitchell Professor at the School of Medicine and senior author of a study that details the findings. "It was a surprisingly effective treatment."

The study will be published online May 23 in the Annals of Surgery.

After sutures are removed, the edges of a healing incision are pulled in different directions by the taut, surrounding skin, causing scar tissue to thicken and spread. The novel dressing, which the authors refer to as a "stress-shielding device," eliminates this tension and hence a considerable amount of scarring.

"This work actually started 20 years ago when I was an intern at Massachusetts General Hospital," said lead author Geoffrey Gurtner, MD, professor and associate chair of surgery. "I realized early on that we were not going to solve the problem of scarring with current surgical tools and techniques."

Co-author Reinhold Dauskardt, PhD, professor of materials science and engineering in the School of Engineering, recalled a meeting he had with Gurtner that launched the effort to create a stress-shielding device. "We were talking about our respective research," Dauskardt said. "Geoff had a lot of experience in wound healing and was thinking about factors that led to scarring. He said, 'If only we could keep in check the mechanical forces acting on the wound.' I had multiple programs on skin biomechanics and transdermal-drug delivery. I said, 'I think I can do that.'"

Dauskardt and his colleagues created the dressing in his lab. It is made of a thin and elastic silicone plastic that is stretched over the incision after sutures have been removed. The dressing sticks to the skin with the help of an adhesive. As it contracts, it provides uniform compression across the wound.

Scar tissue, which is less flexible than regular skin, can cause functional problems, such as limiting motion. Hair does not grow in a scar, and it doesn't have sweat glands. In addition, scars do not look like regular skin: They are often raised and have a pinkish hue. Many people consider them unattractive. Yet they are an unavoidable side effect of surgery. Every year in the United States, more than 50 million incisions are created during operations. Meanwhile, hundreds of millions of people already have scars that they would prefer to eliminate. Current scar-removal techniques, including surgical excision, steroid injections and laser therapy, are generally expensive, painful or simply not very effective, the authors say.

The researchers predicted the dressing will be used not only to reduce scarring from incisions, but also to make the surgical revision of existing scars a more appealing option; the second scar would be much less visible, if visible at all.

In pigs, which have skin similar to that of humans, the area of scars caused by roughly 1-inch incisions was reduced six-fold by the stress-shielding device, compared to pigs in a control group with the same-sized incisions, the study said. The stress-shielded wounds "demonstrated nearly scarless closure" eight weeks after sutures had been removed.

The researchers also tested the device on roughly 1-by-1.5-inch excisions — a wound mimicking the kind caused by scar removal — and found that "stress shielding dramatically decreased scar area" compared to unshielded wounds of the same size. "The device seemed to promote regenerative-like repair rather than scar formation," the authors wrote.

Next, the researchers tested the device on nine female patients who had undergone abdominoplasties (tummy tucks). Given the quantity of tissue removed during this elective surgery, a tremendous amount of tension occurred across the wound after closure. (Scars from these procedures are typically wide and thick.) Longaker said he and his colleagues deliberately chose to test the dressing on incisions closed with high tension: If the dressing could reduce scarring in such cases, it would surely work on any other kind of incision.

One side of the abdomen-wide incision on each patient was treated with the stress-shielding dressing; the other half was not. A panel of three plastic surgeons unaffiliated with the research, as well as a panel of three people not in the medical profession, acted as judges. On a 100-point scale, the lay panel scored the appearance of stress-shielded wounds an average of 13.2 points higher than the control wounds. The expert panel scored the scar appearance of the treated incisions 39.2 points higher. In both of these analyses, the difference between the treated side and the control side were highly significant, the researchers said.

But they noted that some of the wounds demonstrated more dramatic improvement than others. They speculate this may have been due to differences in the amount of tension present in the dressings when they were applied to the wounds. In any case, the researchers cautioned that this was a preliminary clinical study designed only to show "proof of principle in humans."

"Larger clinical trials are being planned to include greater ethnic diversity within the patient population and to determine the optimal range of stress-shielding forces for anatomic region- and dimension-specific wounds," the authors wrote.

Other co-authors of the paper, all at Stanford, were: Victor Wong, MD, and Kirit Bhatt, MD, postdoctoral research fellows in the Department of Surgery; Kenneth Wu, PhD, a recent postdoctoral scholar in the Department of Materials Science and Engineering; Ivan Vial, a medical student; Karine Padois, PhD, a postdoctoral scholar in the Department of Materials Science and Engineering; and Joshua Korman, MD, an adjunct clinical assistant professor of plastic and reconstructive surgery.

The research was supported by a Wallace H. Coulter Translational Partners Grant; the Armed Forces Institute of Regenerative Medicine; the Hagey Family Endowed Fund in Stem Cell Research and Regenerative Medicine; and the Oak Foundation.

Neodyne Biosciences Inc. provided the special surgical dressings for the study. Gurtner, Dauskardt and Longaker are founders and hold equity in the company.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

John Sanford | EurekAlert!
Further information:
http://www.stanfordmed.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>