Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinal cord injuries associated with increased risk of heart disease

24.10.2011
New research from the Heart and Stroke Foundation and the Christopher and Dana Reeve Foundation may help explain why people with spinal cord injury (SCI) have a higher risk of developing heart disease.

Damage to the autonomic nervous system is a key predictor of cardiovascular risk, researcher Rianne Ravensbergen told the Canadian Cardiovascular Congress 2011, co-hosted by the Heart and Stroke Foundation and the Canadian Cardiovascular Society.

Heart disease after a SCI is the leading cause of morbidity and mortality in this population. It is well known that regular exercise is beneficial for cardiovascular health. However, for people with SCI, says Ravensbergen, a PhD candidate supervised by Dr. Victoria Claydon in the cardiovascular physiology laboratory at Simon Fraser University, exercise is only part of the story. "In this specific group we should also be looking at whether they have autonomic dysfunction, because this causes a higher risk for heart disease."

The autonomic system controls functions of the body that are automatic, or involuntary – such as activities of the bladder, bowel, gastrointestinal tract, liver, heart, and blood vessels. After SCI the autonomic nerves in the spinal cord can be damaged, leading to widespread abnormalities in autonomic function, and, of particular relevance to Ravensbergen's work, abnormal control of the heart and blood vessels.

Cardiovascular disease accounts for 30 percent of all deaths in Canada. For those with spinal cord injury – almost 85,000 Canadians – heart disease tends to develop earlier in life, even in those with a healthy lifestyle. "In people with autonomic dysfunction due to SCI, they may remain at high risk of cardiovascular disease, even if they maintain a healthy lifestyle and exercise regularly," says Ravensbergen, adding that her findings may help explain this disconnect.

In her study, Ravensbergen assessed 20 people with spinal cord injury and 14 able-bodied controls to determine their risk for cardiovascular disease, including measurements for glucose tolerance, body mass index (BMI), body fat and abdominal fat. Those with SCI had decreased glucose tolerance and increased total and abdominal fat.

Ravensbergen then divided the SCI group into two subgroups: people with autonomic dysfunction and those without. While both groups had high cholesterol, she was surprised to find that those with autonomic dysfunction had problems with blood sugar. "These people are in a pre-diabetic state, which elevates their risk for heart disease," she says.

This study indicates that after the recovery period, there is value in screening the autonomic system to evaluate the cardiovascular system of spinal cord patients. Whether an increased risk of heart disease is truly due to the spinal cord injury or related to patient characteristics after such injury remains to be sorted out.

"This made-in-Canada research will aid people with spinal cord injury both in this country and across the globe," says Heart and Stroke Foundation spokesperson Dr. Beth Abramson. "It will be exciting to pursue this entirely new avenue, which will hopefully allow clinicians to streamline efforts to prevent heart disease in this group of patients."

People with spinal cord injury are normally tested for motor and sensory damage, but not for damage to the autonomic pathways, which run along the spinal cord, says Ravensbergen. "SCI in humans is never clear-cut. We never exactly know which pathways are affected. We don't really take into consideration how control of the cardiovascular system is affected," she explains.

Further studies are necessary to investigate the role that autonomic nerves play, how to better measure and improve autonomic function and, ultimately, the best ways to prevent heart disease, she adds.

Ravensbergen says this research could further help inform other autonomic dysfunction disorders and their relationship to heart health.

Statements and conclusions of study authors are solely those of the study authors and do not necessarily reflect Foundation or CCS policy or position. The Heart and Stroke Foundation of Canada and the Canadian Cardiovascular Society make no representation or warranty as to their accuracy or reliability.

The Heart and Stroke Foundation (heartandstroke.ca), a volunteer-based health charity, leads in eliminating heart disease and stroke and reducing their impact through the advancement of research and its application, the promotion of healthy living, and advocacy.

For more information and/or interviews, contact

Amanda Bates
Curve Communications
amanda@curvecommunications.com
office: 604-684-3170
cell: 604-306-0027
Gina Vesnaver
Curve Communications
gina@curvecommunications.com
office: 604-684-3170
cell: 604-317-6129
Congress information and media registration is at www.cardiocongress.org
After October 26, 2011, contact:
Jane-Diane Fraser
Heart and Stroke Foundation of Canada
(613) 569-4361 ext 273, jfraser@hsf.ca

Amanda Bates | EurekAlert!
Further information:
http://www.hsf.ca
http://www.cardiocongress.org

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>