Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinach could lead to alternative energy more powerful than Popeye

24.07.2014

Spinach gave Popeye super strength, but it also holds the promise of a different power for a group of scientists: the ability to convert sunlight into a clean, efficient alternative fuel.

Purdue University physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.


Purdue physics professor Yulia Pushkar (left) and postdoctoral researcher Lifen Yan work in Pushkar's laser lab. Pushkar and Yan are part of an international team using spinach to study the proteins involved in photosynthesis. (Purdue University photo/Tim Brouk)

“The proteins we study are part of the most efficient system ever built, capable of converting the energy from the sun into chemical energy with an unrivaled 60 percent efficiency,” said Yulia Pushkar, a Purdue assistant professor of physics involved in the research. “Understanding this system is indispensible for alternative energy research aiming to create artificial photosynthesis.”

During photosynthesis plants use solar energy to convert carbon dioxide and water into hydrogen-storing carbohydrates and oxygen. Artificial photosynthesis could allow for the conversion of solar energy into renewable, environmentally friendly hydrogen-based fuels.

In Pushkar’s laboratory, students extract a protein complex called Photosystem II from spinach they buy at the supermarket. It is a complicated process performed over two days in a specially built room that keeps the spinach samples cold and shielded from light, she said.

Once the proteins have been carefully extracted, the team excites them with a laser and records changes in the electron configuration of their molecules.

“These proteins require light to work, so the laser acts as the sun in this experiment,” Pushkar said. “Once the proteins start working, we use advanced techniques like electron paramagnetic resonance and X-ray spectroscopy to observe how the electronic structure of the molecules change over time as they perform their functions.”

Photosystem II is involved in the photosynthetic mechanism that splits water molecules into oxygen, protons and electrons. During this process a portion of the protein complex, called the oxygen-evolving complex, cycles through five states in which four electrons are extracted from it, she said.

The international team recently revealed the structure of the first and third states at a resolution of 5 and 5.5 Angstroms, respectively, using a new technique called serial femtosecond crystallography. A paper detailing the results was published in Nature and is available online. In addition to Pushkar, Purdue postdoctoral researcher Lifen Yan and former Purdue graduate student Katherine Davis participated in the study and are paper co-authors.

Petra Fromme, professor of chemistry and biochemistry at Arizona State University, leads the international team.

“The trick is to use the world’s most powerful X-ray laser, named LCLS, located at the Department of Energy’s SLAC National Accelerator Laboratory,” said Fromme in a statement. “Extremely fast femtosecond (one-quadrillionth of a second) laser pulses record snapshots of the PSII crystals before they explode in the X-ray beam, a principle called ‘diffraction before destruction.’”

While X-ray crystallography reveals structural changes, it does not provide details of how the electronic configurations evolve over time, which is where the Purdue team’s work came in. The Purdue team mimicked the conditions of the serial femtosecond crystallography experiment, but used electron paramagnetic resonance to reveal the electronic configurations of the molecules, Pushkar said.

“The electronic configurations are used to confirm what stage of the process Photosystem II is in at a given time,” she said. “This information is kind of like a time stamp and without it the team wouldn’t have been able to put the structural changes in context.”

The National Science Foundation and Department of Energy funded the Purdue team’s work. 

Writer: Elizabeth Gardner, 765-494-2081, ekgardner@purdue.edu 

Source: Yulia Pushkar, 765-496-3279, ypushkar@purdue.edu  

ASU news release:

https://asunews.asu.edu/20140709-water-splitting-photosynthesis 

Elizabeth K. Gardner | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/spinach-could-lead-to-alternative-energy-more-powerful-than-popeye.html

Further reports about: ASU Energy LCLS Photosystem SLAC X-ray energy photosynthesis protein proteins spectroscopy

More articles from Health and Medicine:

nachricht "CCS Telehealth Ostsachsen", Germany's largest telemedicine project, goes online in Dresden
02.07.2015 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Live imaging reveals how wound healing influences cancer
01.07.2015 | EMBO

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens acquires leading UK enforcement provider Zenco Systems

02.07.2015 | Press release

Viaducts with wind turbines, the new renewable energy source

02.07.2015 | Power and Electrical Engineering

NASA sees heavy rain in Tropical Cyclone Chan-Hom

02.07.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>