Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding up cancer diagnosis during surgery

18.09.2013
Tissue-conserving cancer surgery is a highly skilled procedure which involves time-consuming tissue preparation to detect the margins of cancerous tissue. The goal is to remove as much of the tumour as possible while sparing healthy tissue.

With funding from the National Institute for Health Research (NIHR), experts at The University of Nottingham have developed a highly accurate prototype technique which can produce a detailed ‘spectroscopic fingerprint’ of each tissue layer removed during surgery.

This technique — which can produce detailed maps of the tissue rich in information at the molecular level — has the potential to speed up and improve the diagnosis of cancer tissue during the operation as well as reduce unnecessary surgery.

The research has been published in the prestigious journal Proceedings of the National Academy of Sciences and the team, led by Dr Ioan Notingher in the School of Physics and Astronomy, are now looking to build an optimised instrument that can be tested in the clinic.

Dr Notingher said: “By refining our prototype instrument to make it more user-friendly and even faster to use. Diagnosis of each tissue layer could be obtained in just a few minutes — rather than hours. Such developments have the potential to revolutionise the surgical treatment of cancers. This technology will provide a fast and objective way for surgeons to make sure that all the cancer cells have been removed whilst at the same time preserving as much healthy tissue as possible.”

The challenges of tissue-conserving surgery

Typically, skin conserving surgery involves cutting away one thin layer of tissue after another and each layer after another is carefully examined to make sure that all the cancer has been removed. This lengthy process is stopped when only health tissue is left. Successful removal of all cancer cells is the key to achieving lower rates of the cancer returning but there is always a balance to be struck between making sure all the cancer is removed and preserving as much healthy tissue as possible in order to reduce scarring and disfigurement.

Dr Notingher said: “The real challenge is to know where the cancer starts and ends when looking at it during an operation so that the surgeon knows when to stop cutting. Our technique can also diagnose the presence or absence of skin cancer in thick chunks of skin tissue, making it unnecessary to cut the tissue up further into thin slices.”

Scientific research in this field started around two decades ago and only now are scientists starting to publish the results of their work. The use of lasers and high-sensitivity light detection technologies allows faster and more sensitive imaging of tissues and discrimination of tumours.

A huge step forward for the patient

One particular technique, known as Mohs surgery — microscopically controlled surgery — is used for the treatment of difficult cases of a type of skin cancer called basal cell carcinoma (BCC). BCC is the commonest cancer in humans with more than 60,000 new patients diagnosed each year in the UK. The incidence of BCC continues to increase each year because we have an ageing population who have had a lot of sun exposure in the past. Mohs surgery provides the highest cure rates for BCC, but the procedure takes a lot of time because each new tissue layer has to be frozen and examined during the operation. Typically, this takes around 1-2 hours per layer so an operation can take as long as five to seven hours in total. So, from a patient’s perspective, there is a need to reduce the Mohs surgery time by developing faster and objective ways of seeing whether the cancer has been completely removed during a shorter operation under a single local anaesthetic.

Dr Notingher’s technique uses an integrated optical technique based on auto-fluorescence (natural fluorescence from the tissue) and Raman spectroscopy (a highly sensitive technique using lasers to identify the molecules in a tissue sample).

Dr Notingher said: “Our technique does not rely on time consuming and laborious steps of tissue fixation, staining, labelling or sectioning. The beauty is that it can be automated and very objective. To make this new technique suitable for use in the middle of an operation such as Mohs surgery for BCC, we have combined tissue auto-fluorescence, which is quick and good at picking out all the cancer cells (but not at excluding normal tissue) as a first step, followed by Raman scattering, a rather slow but good at separating normal from cancer tissue. By combining these two methods into one technique high accuracy diagnosis of BCC can be obtained in only a few minutes.”

Professor Hywel Williams, one of the dermatologists working in the team and Director of the Centre for Evidence Based Dermatology (CEBD) at The University of Nottingham, said: “I am now convinced that this technique is reliable and potentially fast enough to replace conventional methods that determine tumour clearance for basal cell carcinoma removed during Mohs micrographic surgery — an advance that will increase the accessibility of Mohs to many more people across the world.”

This NIHR-funded research was carried out under its Invention for Innovation (i4i) Programme in collaboration with Nottingham University Hospital National Health Service (NHS) Trust, Royal Holloway University, and the CEBD.

More information is available from
Dr Ioan Notingher on +44 (0)115 951 5172,
ioan.notingher@nottingham.ac.uk
Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk
Phone: +44 (0)115 951 5751
Location: University Park

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

Further reports about: CEBD Speeding cancer cells cell carcinoma health services healthy tissue skin cancer

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>