Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding up cancer diagnosis during surgery

18.09.2013
Tissue-conserving cancer surgery is a highly skilled procedure which involves time-consuming tissue preparation to detect the margins of cancerous tissue. The goal is to remove as much of the tumour as possible while sparing healthy tissue.

With funding from the National Institute for Health Research (NIHR), experts at The University of Nottingham have developed a highly accurate prototype technique which can produce a detailed ‘spectroscopic fingerprint’ of each tissue layer removed during surgery.

This technique — which can produce detailed maps of the tissue rich in information at the molecular level — has the potential to speed up and improve the diagnosis of cancer tissue during the operation as well as reduce unnecessary surgery.

The research has been published in the prestigious journal Proceedings of the National Academy of Sciences and the team, led by Dr Ioan Notingher in the School of Physics and Astronomy, are now looking to build an optimised instrument that can be tested in the clinic.

Dr Notingher said: “By refining our prototype instrument to make it more user-friendly and even faster to use. Diagnosis of each tissue layer could be obtained in just a few minutes — rather than hours. Such developments have the potential to revolutionise the surgical treatment of cancers. This technology will provide a fast and objective way for surgeons to make sure that all the cancer cells have been removed whilst at the same time preserving as much healthy tissue as possible.”

The challenges of tissue-conserving surgery

Typically, skin conserving surgery involves cutting away one thin layer of tissue after another and each layer after another is carefully examined to make sure that all the cancer has been removed. This lengthy process is stopped when only health tissue is left. Successful removal of all cancer cells is the key to achieving lower rates of the cancer returning but there is always a balance to be struck between making sure all the cancer is removed and preserving as much healthy tissue as possible in order to reduce scarring and disfigurement.

Dr Notingher said: “The real challenge is to know where the cancer starts and ends when looking at it during an operation so that the surgeon knows when to stop cutting. Our technique can also diagnose the presence or absence of skin cancer in thick chunks of skin tissue, making it unnecessary to cut the tissue up further into thin slices.”

Scientific research in this field started around two decades ago and only now are scientists starting to publish the results of their work. The use of lasers and high-sensitivity light detection technologies allows faster and more sensitive imaging of tissues and discrimination of tumours.

A huge step forward for the patient

One particular technique, known as Mohs surgery — microscopically controlled surgery — is used for the treatment of difficult cases of a type of skin cancer called basal cell carcinoma (BCC). BCC is the commonest cancer in humans with more than 60,000 new patients diagnosed each year in the UK. The incidence of BCC continues to increase each year because we have an ageing population who have had a lot of sun exposure in the past. Mohs surgery provides the highest cure rates for BCC, but the procedure takes a lot of time because each new tissue layer has to be frozen and examined during the operation. Typically, this takes around 1-2 hours per layer so an operation can take as long as five to seven hours in total. So, from a patient’s perspective, there is a need to reduce the Mohs surgery time by developing faster and objective ways of seeing whether the cancer has been completely removed during a shorter operation under a single local anaesthetic.

Dr Notingher’s technique uses an integrated optical technique based on auto-fluorescence (natural fluorescence from the tissue) and Raman spectroscopy (a highly sensitive technique using lasers to identify the molecules in a tissue sample).

Dr Notingher said: “Our technique does not rely on time consuming and laborious steps of tissue fixation, staining, labelling or sectioning. The beauty is that it can be automated and very objective. To make this new technique suitable for use in the middle of an operation such as Mohs surgery for BCC, we have combined tissue auto-fluorescence, which is quick and good at picking out all the cancer cells (but not at excluding normal tissue) as a first step, followed by Raman scattering, a rather slow but good at separating normal from cancer tissue. By combining these two methods into one technique high accuracy diagnosis of BCC can be obtained in only a few minutes.”

Professor Hywel Williams, one of the dermatologists working in the team and Director of the Centre for Evidence Based Dermatology (CEBD) at The University of Nottingham, said: “I am now convinced that this technique is reliable and potentially fast enough to replace conventional methods that determine tumour clearance for basal cell carcinoma removed during Mohs micrographic surgery — an advance that will increase the accessibility of Mohs to many more people across the world.”

This NIHR-funded research was carried out under its Invention for Innovation (i4i) Programme in collaboration with Nottingham University Hospital National Health Service (NHS) Trust, Royal Holloway University, and the CEBD.

More information is available from
Dr Ioan Notingher on +44 (0)115 951 5172,
ioan.notingher@nottingham.ac.uk
Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk
Phone: +44 (0)115 951 5751
Location: University Park

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

Further reports about: CEBD Speeding cancer cells cell carcinoma health services healthy tissue skin cancer

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>