Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speed limit on babies' vision

15.07.2011
Babies have far less ability to recognize rapidly changing images than adults, according to research from the UC Davis Center for Mind and Brain.

The results show that while infants can perceive flicker or movement, they may not be able to identify the individual elements within a moving or changing scene as well as an adult.

"Their visual experience of changes around them is definitely different from that of an adult," said Faraz Farzin, who conducted the work as a graduate student at UC Davis and is now a postdoctoral fellow at Stanford University.

The study, conducted with Susan Rivera, an associate professor at UC Davis, and David Whitney, an associate professor of psychology at UC Berkeley, is published online by the journal Psychological Science.

Babies are not born with all the visual abilities they need in life. Their brains gradually develop the ability to use visual information to discover their world.

Even in adults, the brain is limited in the rate at which it can keep up with changing information in a scene, Farzin said.

An adult can't recognize individual moment-to-moment changes that occur faster than every 50-70 milliseconds.

For infants, Farzin and her colleagues found that the speed limit is about half a second — about 10 times slower than for adults.

To determine the speed limit on infants' perception, Farzin and her fellow researchers tracked the eye movements of a group of 6- to 15-month-olds as they were shown four flickering squares. Three squares flickered from black to white and back, and one square flickered out of phase with the others (white to black), which should draw more attention because it is the "odd man out."

Eye tracking of the infants showed that they did not spend more time looking at the out-of-phase square, meaning they could not distinguish it as being different, she said.

"It was surprising how coarse their resolution was," Farzin said.

A TV show or movie in which scenes change faster than two frames per second is probably a blur to an infant under 15 months, Farzin said.

Farzin is now extending her work to people with developmental disorders that affect visual perception, such as dyslexia, fragile X syndrome or autism. By understanding visual perception in typically developing children, she hopes to understand how and when it can go wrong.

The study was supported by grants from the National Institutes of Health and the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>