Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speed limit on babies' vision

15.07.2011
Babies have far less ability to recognize rapidly changing images than adults, according to research from the UC Davis Center for Mind and Brain.

The results show that while infants can perceive flicker or movement, they may not be able to identify the individual elements within a moving or changing scene as well as an adult.

"Their visual experience of changes around them is definitely different from that of an adult," said Faraz Farzin, who conducted the work as a graduate student at UC Davis and is now a postdoctoral fellow at Stanford University.

The study, conducted with Susan Rivera, an associate professor at UC Davis, and David Whitney, an associate professor of psychology at UC Berkeley, is published online by the journal Psychological Science.

Babies are not born with all the visual abilities they need in life. Their brains gradually develop the ability to use visual information to discover their world.

Even in adults, the brain is limited in the rate at which it can keep up with changing information in a scene, Farzin said.

An adult can't recognize individual moment-to-moment changes that occur faster than every 50-70 milliseconds.

For infants, Farzin and her colleagues found that the speed limit is about half a second — about 10 times slower than for adults.

To determine the speed limit on infants' perception, Farzin and her fellow researchers tracked the eye movements of a group of 6- to 15-month-olds as they were shown four flickering squares. Three squares flickered from black to white and back, and one square flickered out of phase with the others (white to black), which should draw more attention because it is the "odd man out."

Eye tracking of the infants showed that they did not spend more time looking at the out-of-phase square, meaning they could not distinguish it as being different, she said.

"It was surprising how coarse their resolution was," Farzin said.

A TV show or movie in which scenes change faster than two frames per second is probably a blur to an infant under 15 months, Farzin said.

Farzin is now extending her work to people with developmental disorders that affect visual perception, such as dyslexia, fragile X syndrome or autism. By understanding visual perception in typically developing children, she hopes to understand how and when it can go wrong.

The study was supported by grants from the National Institutes of Health and the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>