Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speed heals

23.11.2010
USC College's Samantha Butler and collaborators show that the rate and direction of axon growth in the spinal cord can be controlled, a discovery that 1 day may help improve treatment for spinal injuries or neurodegenerative diseases

Both the rate and direction of axon growth in the spinal cord can be controlled, according to new research by USC College's Samantha Butler and her collaborators.

The study, "The Bone Morphogenetic Protein Roof Plate Chemorepellent Regulates the Rate of Commissural Axonal Growth," by Butler; lead researcher Keith Phan and graduate students Virginia Hazen and Michele Frendo of USC College; and Zhengping Jia of the University of Toronto, was published online in the November 17 issue of the Journal of Neuroscience.

Butler, assistant professor of biological sciences, found that a series of connections at the cellular level produce a guidance cue that tells an axon how fast and in which direction to grow in an embryonic environment. Butler and her team also discovered that by modulating the activity of enzyme LIM domain kinase 1 (Limk1), the rate of axon growth can be stalled or accelerated.

Future applications of these findings may include enhancing the ability to regenerate neuronal circuits in patients suffering from spinal cord injuries or neurodegenerative diseases.

Initially, to understand these guidance cues, Butler and her colleagues studied the mechanisms by which neuronal circuits first develop in the embryonic states of rodents and chickens. While researching how an axon is programmed to grow in a particular direction, Butler and her group made a surprising discovery.

"We were expecting that when we perturbed the signaling pathway, the axon would be confused in terms of direction," Butler said. "But we found a much greater effect — the axon grew at a different speed."

Under normal conditions, guidance cues cause a developing neuron to extend an axon into the environment. In a developing spinal cord, the cue comes in the form of a repellant, which acts from behind the cell body to direct the growth of the axon in the opposite direction. This repellant is mediated by bone morphogenetic proteins (BMPs).

In the beginning of the multi-step growth process, BMPs bind to a cell and activate its receptors; then a second messenger is triggered, in this case Limk1. Limk1 modifies the activity of a protein called cofilin. When cofilin is active, the axon grows. If the cofilin becomes inactive, growth comes to a halt.

Butler and her team discovered that by increasing the amount of cofilin, or decreasing the amount of the restricting Limk1, the commissural axon growth accelerated. Likewise, when the amount of cofilin was decreased, or the amount of Limk1 was increased, axon growth stopped.

The axon growth in embryonic spinal cords in which Limk1 was lowered appeared to be more advanced than in controls — the axons grew up to 25 percent faster.

Since the axon is growing through an ever-changing environment, if the accelerated rate moves the axon to its subsequent signal destination too fast, that destination may not yet be created. As a result, growth acceleration can lead to errors in the process, Butler said. She hopes to determine the optimal rate of acceleration that prevents these errors but still supports enhanced regeneration.

"That the growth of axons needs to be controlled in time as well as space is something that is an interesting piece of biology," Butler said. "How it can be applied is very exciting."

Butler sees the application of this research as one part of the process for rebuilding damaged circuits in patients who have sustained spinal cord injuries, or those suffering from Parkinson's or Alzheimer's diseases, possibly using stem-cell-derived therapy. The average rate of axon growth is just 1 mm per day, so any increase would improve a patient's treatment.

"If we knew how to modulate cofilin to maximize the speed of axon growth," Butler said, "perhaps we could shave time off that process of circuit regeneration."

Read the full text of the article at http://www.jneurosci.org/cgi/content/full/30/46/15430

Laurie Moore | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>