Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speaking freely

24.02.2015

Two UCSB studies shed light on stuttering treatment and a neurological deficit potentially linked to the disorder

Stuttering -- a speech disorder in which sounds, syllables or words are repeated or prolonged -- affects more than 70 million people worldwide. That's 1 percent of the global population. Four times as many men as women are afflicted with the disorder and, while the condition is not life-threatening, it is debilitating as it interferes with effective communication and erodes self-esteem and confidence.


DSI-based 3-D modeling resolves the triple crossing within the white matter of the parietal lobe.

Credit: UCSB

Two new studies from UC Santa Barbara researchers provide new insight into the treatment of stuttering as well as understanding its physiological basis. The first paper, published in the American Journal of Speech-Language Pathology, compares a new treatment developed at UCSB to the standard best practices protocol. The second study, which appears in the Journal of Speech, Language, and Hearing Research, uses imaging to identify abnormal areas of white matter in the brains of adult stutterers.

According to co-author Janis Ingham, a professor emerita of speech and hearing sciences at UCSB and co-author of both papers, the two studies taken together demonstrate two critical points: A neuroanatomic abnormality exists in the brains of people who stutter, yet they can learn to speak fluently in spite of it.

... more about:
»MPI »UCSB »disorder »iPad »pathways

"Together these papers break new ground, one in the treatment area and the other in neuroanatomy," said Roger Ingham, a professor of speech and hearing sciences at UCSB and an author on both papers. "I decided to work with Scott Grafton in the psychology department to see whether it's possible to improve stuttering treatment by having a better knowledge of the neural systems that are functionally related to the disorder."

A New Approach

Roger Ingham's new Modifying Phonation Intervals (MPI) Stuttering Treatment Program takes a somewhat different approach from the current standard protocol, which teaches stutterers to prolong their speech. The intensive MPI program teaches stutterers to reduce the frequency with which they produce very short intervals of phonation while speaking. A phonated interval is the elapsed time of a voiced unit of speech. In the word "shout," for example, "out" is a voiced (phonated) unit; "sh" is an unvoiced unit. The MPI program software provides real-time feedback to the stutterer regarding the occurrence of these short phonated intervals so he or she can learn to reduce their occurrence, which improves fluency.

After a lengthy period of basic research and testing, the MPI program was studied in phase II clinical trials with funding from the National Institutes of Health. Ingham and his colleagues found that reducing the frequency of the speaker's short phonated intervals resulted in durable and natural-sounding fluent speech for the majority of study participants.

"It's not a five-minute job," said Ingham, lead author of the paper on MPI's efficacy. "A person who stutters needs to be under this treatment system for two to three hours a day, six days a week for the first phase of the program, which lasts about three weeks."

MPI treatment is divided into four phases, each designed to be managed jointly by the person who stutters and the clinician. MPI program software is available as an app for the iPad. The clinician uses a "master" app to teach the stutterer how to follow the program on an iPad at home.

Increasingly Complex Tasks

Progress is contingent on performance. Once participants complete the initial phase, they move on to increasingly complex speaking tasks until they ultimately conquer what they deem to be their most difficult speaking situations.

"We have to be extraordinarily creative in developing some of these situations," Roger Ingham noted. "We've had participants talking before classes and being interviewed by UCSB's Nobel Prize winners, but we also use Toastmasters where they get a lot of experience speaking in public."

Ingham's team is currently investigating the use of virtual reality in conjunction with the MPI treatment program. They are exploring whether those difficult speaking situations can be created more efficiently and effectively through reality versions.

The study results show that outcomes for the MPI and prolonged speech treatment groups were similar. However, more people in the MPI program were able to identify and employ the specific speech behaviors necessary for successful treatment. Ingham noted that twice as many people receiving the MPI treatment were successful in maintaining naturally fluent speech 12 months after they finished the program compared to those receiving the prolonged speech treatment.

The Neurophysiology of Stuttering

But what causes stuttering in the first place? The answer appears to lie in the brain's white matter.

Led by Grafton, a professor in UCSB's Department of Psychological and Brain Sciences, the imaging study used diffusion spectrum imaging (DSI) in an MRI scanner to examine the white matter in the brains of eight adult stutterers. DSI is able to parse tracts in the brain and follow them beyond the point where they intersect. Grafton, also a member of the campus's Institute for Collaborative Biotechnologies, likens the brain's tracts to highways and surface streets, only in the brain the intersections are three-dimensional.

Grafton and the paper's lead author, Matt Cieslak, a graduate student in Grafton's lab, discovered abnormalities of the arcuate fasciculus, one of the key pathways that connect the language areas of the brain. So named because it forms an arch, the arcuate fasciculus connects at the front of the brain to the area of the cerebral cortex linked to speech production. At the back of the brain, it branches into three parts.

"What's interesting is the back half," said Grafton. "In the vast majority of the stutterers we scanned, there seems to be a large portion of the connection projecting into the temporal cortex, an area of the brain also critical for speech perception. Seven of eight subjects are missing this third branch of the arcuate fasciculus bundle. So in this small group, we can see a really, really strong effect."

These results required not only sensitive imaging but also completely new analysis methods to examine each tract in the brain separately and at the individual subject level. "Big advances have allowed us to reconstruct pathways with greater detail than we were able to do before," said Cieslak, who developed the new analysis techniques.

"In terms of data, each subject produces what looks like a bowl of spaghetti or a ball of yarn and we had to figure out how to put that data into an analytical framework," he explained. "About 40,000 lines of code later we now have a platform for analyzing white matter data, which can be expanded to a large set of subjects."

Continuing Exploration

Going forward, the researchers would like to study the brains of recovered stutterers to see whether white matter actually changes with treatment. "Is there something special in the wiring of people who recover?" Grafton asked. "Maybe they are missing part of the arcuate fasciculus pathway but they've got another one that's strong enough to pick up the slack. We'd like to be able to investigate that possibility using DSI."

Once treated as a psychological or emotional condition, stuttering can now be traced to brain neuroanatomy and physiology, according to the researchers. "We're one of a number of groups making a strong case that there is something fundamentally different about the brains of people who stutter," Grafton said.

"I'm really excited about this work because it's transforming how we do research in patient groups with very common and challenging developmental disorders that have a great impact on people's lives but are otherwise largely ignored in neuroscience and by funding agencies," Grafton added. "They get diagnosed or described and we throw therapies at them but we don't really understand the pathophysiologic basis or the biology of these problems. The fact that we can now see big changes in scans of individuals who stutter is huge. It opens up a lot of opportunities, not just for stutterers but for all kinds of developmental problem like dyslexia, childhood speech apraxia and disorders of coordination."

###

People who have or have had issues with stuttering and are interested in participating in ongoing brain scan studies should email Roger Ingham at rjingham@speech.ucsb.edu.

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

Further reports about: MPI UCSB disorder iPad pathways

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>