Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space-related radiation research could help reduce fractures in cancer survivors

16.09.2009
A research project looking for ways to reduce bone loss in astronauts may yield methods of improving the bone health of cancer patients undergoing radiation treatment.

It is well documented that living in the microgravity environment of space causes bone loss in astronauts, but until recently, little was known about the effects of space radiation on bones. Dr. Ted Bateman leads a project funded by the National Space Biomedical Research Institute (NSBRI) to understand radiation-induced bone loss and to determine which treatments can be used to reduce that loss and lower the risk of fractures.

“Our studies indicate significant bone loss at the radiation levels astronauts will experience during long missions to the moon or Mars,” said Bateman, a member of NSBRI’s Musculoskeletal Alterations Team.

Bateman, an associate professor of bioengineering at Clemson University, and colleagues at Clemson and Loma Linda University have discovered in experiments with mice that bone loss begins within days of radiation exposure through activation of bone-reducing cells called osteoclasts. Under normal conditions, these cells work with bone-building cells, called osteoblasts, to maintain bone health.

“Our research challenges some conventional thought by saying radiation turns on the bone-eating osteoclasts,” Bateman said. “If that is indeed the case, existing treatments, such as bisphosphonates, may be able to prevent this early loss of bone.”

Bisphosphonates are used to prevent loss of bone mass in patients who have osteoporosis or other bone disorders.

Even though the research is being performed to protect the health of NASA astronauts, cancer patients, especially those who receive radiation therapy in the pelvic region, could benefit from the research.

“We know that older women receiving radiotherapy to treat pelvic tumors are particularly vulnerable to fracture, with hip fracture rates increasing 65 percent to 200 percent in these cancer patients,” said Bateman. “Hip fractures are very serious; nearly one in four patients who fracture a hip will not survive a year. A large number of surviving patients will require long-term care. More than 80 percent of the patients will not be able to walk unaided or will not be back to pre-fracture activity levels after a year.”

Once a person loses bone, their long-term fracture risk depends on their ability to recover lost bone mass. For older cancer patients, early introduction of bisphosphonates and other forms of treatment could help greatly since the process of regaining bone mass can be more difficult due to lower activity levels.

Clemson’s Dr. Jeff Willey is a collaborator with Bateman and the lead investigator of an NSBRI-funded project looking at the cellular mechanisms involved in radiation-induced bone loss. He said the bone loss in the spaceflight-related experiments has occurred quickly and cell physiology has changed.

“If we expose mice to a relatively low dose of radiation, the cells that break down bone are turned on several days after exposure,” he said. “After radiation exposure, osteoclasts appear to have a different shape. They get flatter, and there are certainly more of them.”

The mice used in the research have received the amount of radiation exposure that is expected to occur during a lengthy mission to the moon or Mars. The amount is much less than what cancer patients receive during treatment. For example, patients receiving radiation treatment in the pelvic region can receive doses up to 80 gray over a six- to eight-week period, with the hip receiving up to 25 gray. Astronauts are likely to receive about 0.5 to 1 gray during a long-duration lunar or martian mission.

Astronauts are at risk of radiation exposure from two sources. The first is proton radiation from the sun. The second, and less understood type, is galactic cosmic radiation from sources outside the galaxy. Galactic cosmic rays and protons would be the source of radiation damage for astronauts during a mission to Mars.

Marcelo Vazquez, NSBRI’s senior scientist for space radiation research, said Bateman’s project and other NSBRI radiation projects will influence spacecraft design and mission planning. “The research will help to define the radiation risks for astronauts during long-term missions,” Vazquez said. “This will lead to strategies for shielding and medical countermeasures to protect against exposure.”

Bateman’s NSBRI work is leading to other studies. “We have been able to initiate a couple of clinical trials with cancer patients to determine if what we are seeing in mice corresponds with bone loss in humans. Preliminary results in these trials show rapid declines in bone mass and strength,” Bateman said.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas
NSBRI
713-798-7595
rbthomas@bcm.edu

Brad Thomas | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=125
http://www.bcm.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>