Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soy May Stop Prostate Cancer Spread

Experimental soy-based drug shows benefits in men with localized prostate cancer

Northwestern Medicine researchers at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University have found that a new, nontoxic drug made from a chemical in soy could prevent the movement of cancer cells from the prostate to the rest of the body.

These findings will be presented at the Ninth Annual American Association for Cancer Research Frontiers in Cancer Prevention Research Conference.

Genistein, a natural chemical found in soy, is being used in the lab of Raymond Bergan, M.D., the director of experimental therapeutics at the Lurie Cancer Center, to inhibit prostate cancer cells from becoming metastatic and spreading to other parts of the body. So far the cancer therapy drug has worked in preclinical animal studies and now shows benefits in humans with prostate cancer.

A recent phase II randomized study of 38 men with localized prostate cancer found that genistein, when given once a day as a pill, one month prior to surgery, had beneficial effects on prostate cancer cells.

Researchers examined the cancer cells from the subjects’ prostates after surgery and found that genistein increased the expression of genes that suppress the invasion of cancer cells and decreased the expression of genes that enhance invasion.

“The first step is to see if the drug has the effect that you want on the cells and the prostate, and the answer is ‘yes, it does,’” said Bergan, a professor of hematology and oncology at Northwestern University Feinberg School of Medicine and a physician at Northwestern Memorial Hospital.

The next step is to conduct another phase II study to see if the drug can stop the cancer cells from moving out of the prostate and into the rest of the body, Bergan said. If confirmed, Bergan said this could be the first therapy for any cancer that is non-toxic and targets and inhibits cancer cell movement.

“All therapies designed to stop cancer cell movement that have been tested to date in humans have basically failed have because they have been ineffective or toxic,” Bergan said. “If this drug can effectively stop prostate cancer from moving in the body, theoretically, a similar therapy could have the same effect on the cells of other cancers.”

Funding from the National Institutes of Health supported this research.

Erin White is the broadcast editor. Contact her at

Erin White | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>