Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Source identification of H7N9 influenza virus causing human infections

25.04.2013
In March 2013, a novel H7N9 influenza virus was identified in China as the etiological agent of a flu-like disease in humans, resulting in some deaths.

A group of scientists, led by Professor Chen Hualan (National Avian Influenza Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences) have investigated the origins of this novel H7N9 influenza virus (Shi et al., 2013).

Following analysis of H7N9 influenza viruses collected from live poultry markets, it was found that these viruses circulating among birds were responsible for human infections. These novel H7N9 viruses are reassortants in which the six internal genes were derived from avian H9N2 viruses; however the origins of their hemagglutinin (HA) and neuraminidase (NA) genes were unclear.

A total of 970 samples were collected from live poultry markets and poultry farms located in Shanghai and Anhui Province. Samples analyzed included drinking water, feces, contaminated soil, and cloacal and tracheal swabs. Of these samples, 20 were positive for the presence of H7N9 influenza viruses. All of the positive samples originated from live poultry markets in Shanghai. Of these 20 positive samples, 10 were isolated from chickens, 3 from pigeons, and 7 were from environmental samples.

The complete genome of three H7N9 isolates, from a chicken, pigeon, and environmental sample, was sequenced and deposited into the GISAID database. Genetic analysis of these isolates revealed high homology across all eight gene segments. Phylogenetic analysis of these novel H7N9 influenza virus isolates showed that that the six internal genes were derived from avian H9N2 viruses, but the ancestor of their HA and NA genes is unknown. According to the GenBank database, the HA genes of the novel isolated viruses were most similar to those from duck H7N3 influenza viruses, sharing 95.2.8% homology at the nucleotide level. The NA gene of the novel H7N9 virus isolates shared highest homology (97.3.9%) with NA genes from H4N9 or H11N9 influenza viruses isolated from ducks, and environmental samples from duck farms, located in the Dongting Lake region. It is clear that the novel H7N9 viruses are the product of gene reassortment, with the internal genes from one donor, and HA and NA genes from one or several other donors.

HA receptor-binding specificity is a major molecular determinant for the host range of influenza viruses. Amino acids at positions 226 and 228 of HA are critical for specificity of receptor-binding in influenza viruses. Within the HA protein of novel H7N9 viruses, there was a leucine residue at position 226, which is characteristic of the HA gene in human influenza viruses. This finding implies that H7N9 viruses have partially acquired human receptor-binding specificity. All of the H7N9 human isolates examined contained a lysine residue at position 627 in the PB2 protein. It is well known that this lysine residue contributes to the replication and transmission of avian influenza viruses in mammalian hosts. It is likely that the acquisition of this lysine in H7N9 viruses during their replication in human hosts has significantly contributed to their virulence and lethality in humans.

Tracing the source of these novel H7N9 influenza viruses, and their subsequent characterization, was a collaborative effort involving researchers from the National Avian Influenza Reference Laboratory at the Harbin Veterinary Research Institute, and Shanghai Animal Disease Control Center. This research project was partially supported by the National Basic Research Program of China (2011CB505000), the China Agriculture Research System (CARS-42-G08), and the National Science and Technology Major Project (2012ZX10004214). We suggest that strong measures, such as continued surveillance of avian and human hosts, control of animal movement, shutdown of live poultry markets, and culling of poultry in affected areas, should be taken during this initial stage of virus prevalence to prevent a possible pandemic. Additionally, it is also imperative to evaluate the pathogenicity and transmissibility of these H7N9 viruses, and to develop effective vaccines and antiviral drugs against so as to reduce their adverse effects upon human health.

corresponding author:

CHEN HuaLan
hlchen1@yahoo.com
Reference:
Shi J Z, Deng G H, Liu P H, et al. Isolation and characterization of H7N9 viruses from live poultry markets—Implication of the source of current H7N9 infection in humans. Chin Sci Bull, 2013, 58, doi:10.1007/s11434-013-5873-4.

http://link.springer.com/article/10.1007/s11434-013-5873-4
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>