Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound rather than sight can activate ‘seeing’ for the blind

07.02.2012
Scientists at the Hebrew University of Jerusalem have tapped onto the visual cortex of the congenitally blind by using sensory substitution devices (SSDs), enabling the blind in effect to “see” and even describe objects.

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature video camera connected to a small computer (or smart phone) and stereo headphones.

The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera.

Remarkably, proficient users who have had a dedicated (but relatively brief) training as part of a research protocol in he laboratory of Dr. Amir Amedi, of the Edmond and Lily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University, are able to use SSDs to identify complex everyday objects, locate people and their postures, and read letters and words.

In addition to SSDs’ clinical opportunities, using functional magnetic resonance imaging opens a unique window for studying the organization of the visual cortex without visual experience by studying the brain of congenitally blind individuals.

The results of the study in Amedi’s lab, recently published in the journal Cerebral Cortex, are surprising. Not only can the sounds, which represent vision, activate the visual cortex of people who have never seen before, but they do so in a way organized according to the large-scale organization and segregation of the two visual processing streams.

For the past three decades, it has been known that visual processing is carried out in two parallel pathways. The ventral occipito-temporal “what” pathway, or the “ventral stream,” has been linked with visual processing of form, object identity and color. Its counterpart is considered to be the dorsal occipito-parietal “where/how” pathway, or the “dorsal stream,” which analyzes visuo-spatial information about object location and participates in visuo-motor planning.

Although this double dissociation between the processing of the two streams has been thoroughly validated, what remained unclear was the role of visual experience in shaping this functional architecture of the brain. Does this fundamental large-scale organizational principle depend on visual experience?

Using sensory substitution, the Hebrew University scientists, led by Ph.D. student Ella Striem-Amit and Dr. Amedi, discovered that the visual cortex of the blind shows a similar dorsal/ventral visual pathway division-of-labor when perceiving sounds that convey the relevant visual information; e.g., when the blind are requested to identify either the location or the shape of an SSD “image,” they activate an area in the dorsal or in the ventral streams, respectively.

This shows that the most important large-scale organization of the visual system into the two streams can develop at least to some extent even without any visual experience, suggesting instead that this division-of-labor is not at all visual in its nature.

Recent research from Amedi’s lab and from other research groups have demonstrated that multiple brain areas are not specific to their input sense (vision, audition or touch), but rather to the task or computation they perform, which may be computed with various modalities.

Extending these finding to a large-scale division-of-labor of the visual system further contributes crucial information towards postulating that the whole brain may be task-specific rather than dependent on a specific sensory input. "The brain is not a sensory machine, although it often looks like one; it is a task machine," summed up Amedi.

These findings suggest that the blind brain can potentially be “awakened” to processing visual properties and tasks, even after lifelong blindness, with the aid of visual rehabilitation, using future medical advances, such as retinal prostheses, say the researchers. A summary of these ideas were published recently in a review in Current Opinion in Neurology by Lior Reich and Shachar Maidenbaum from Amedi’s lab.

A photo of Dr. Amedi wearing one of the SSD devices developed as the result of research in his lab is available at:.

http://media.huji.ac.il/new/photos/hu120207_sightfromsound.jpg

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>