Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound rather than sight can activate ‘seeing’ for the blind

07.02.2012
Scientists at the Hebrew University of Jerusalem have tapped onto the visual cortex of the congenitally blind by using sensory substitution devices (SSDs), enabling the blind in effect to “see” and even describe objects.

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature video camera connected to a small computer (or smart phone) and stereo headphones.

The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera.

Remarkably, proficient users who have had a dedicated (but relatively brief) training as part of a research protocol in he laboratory of Dr. Amir Amedi, of the Edmond and Lily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University, are able to use SSDs to identify complex everyday objects, locate people and their postures, and read letters and words.

In addition to SSDs’ clinical opportunities, using functional magnetic resonance imaging opens a unique window for studying the organization of the visual cortex without visual experience by studying the brain of congenitally blind individuals.

The results of the study in Amedi’s lab, recently published in the journal Cerebral Cortex, are surprising. Not only can the sounds, which represent vision, activate the visual cortex of people who have never seen before, but they do so in a way organized according to the large-scale organization and segregation of the two visual processing streams.

For the past three decades, it has been known that visual processing is carried out in two parallel pathways. The ventral occipito-temporal “what” pathway, or the “ventral stream,” has been linked with visual processing of form, object identity and color. Its counterpart is considered to be the dorsal occipito-parietal “where/how” pathway, or the “dorsal stream,” which analyzes visuo-spatial information about object location and participates in visuo-motor planning.

Although this double dissociation between the processing of the two streams has been thoroughly validated, what remained unclear was the role of visual experience in shaping this functional architecture of the brain. Does this fundamental large-scale organizational principle depend on visual experience?

Using sensory substitution, the Hebrew University scientists, led by Ph.D. student Ella Striem-Amit and Dr. Amedi, discovered that the visual cortex of the blind shows a similar dorsal/ventral visual pathway division-of-labor when perceiving sounds that convey the relevant visual information; e.g., when the blind are requested to identify either the location or the shape of an SSD “image,” they activate an area in the dorsal or in the ventral streams, respectively.

This shows that the most important large-scale organization of the visual system into the two streams can develop at least to some extent even without any visual experience, suggesting instead that this division-of-labor is not at all visual in its nature.

Recent research from Amedi’s lab and from other research groups have demonstrated that multiple brain areas are not specific to their input sense (vision, audition or touch), but rather to the task or computation they perform, which may be computed with various modalities.

Extending these finding to a large-scale division-of-labor of the visual system further contributes crucial information towards postulating that the whole brain may be task-specific rather than dependent on a specific sensory input. "The brain is not a sensory machine, although it often looks like one; it is a task machine," summed up Amedi.

These findings suggest that the blind brain can potentially be “awakened” to processing visual properties and tasks, even after lifelong blindness, with the aid of visual rehabilitation, using future medical advances, such as retinal prostheses, say the researchers. A summary of these ideas were published recently in a review in Current Opinion in Neurology by Lior Reich and Shachar Maidenbaum from Amedi’s lab.

A photo of Dr. Amedi wearing one of the SSD devices developed as the result of research in his lab is available at:.

http://media.huji.ac.il/new/photos/hu120207_sightfromsound.jpg

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>