Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound rather than sight can activate ‘seeing’ for the blind

07.02.2012
Scientists at the Hebrew University of Jerusalem have tapped onto the visual cortex of the congenitally blind by using sensory substitution devices (SSDs), enabling the blind in effect to “see” and even describe objects.

SSDs are non-invasive sensory aids that provide visual information to the blind via their existing senses. For example, using a visual-to-auditory SSD in a clinical or everyday setting, users wear a miniature video camera connected to a small computer (or smart phone) and stereo headphones.

The images are converted into “soundscapes,” using a predictable algorithm, allowing the user to listen to and then interpret the visual information coming from the camera.

Remarkably, proficient users who have had a dedicated (but relatively brief) training as part of a research protocol in he laboratory of Dr. Amir Amedi, of the Edmond and Lily Safra Center for Brain Sciences and the Institute for Medical Research Israel-Canada at the Hebrew University, are able to use SSDs to identify complex everyday objects, locate people and their postures, and read letters and words.

In addition to SSDs’ clinical opportunities, using functional magnetic resonance imaging opens a unique window for studying the organization of the visual cortex without visual experience by studying the brain of congenitally blind individuals.

The results of the study in Amedi’s lab, recently published in the journal Cerebral Cortex, are surprising. Not only can the sounds, which represent vision, activate the visual cortex of people who have never seen before, but they do so in a way organized according to the large-scale organization and segregation of the two visual processing streams.

For the past three decades, it has been known that visual processing is carried out in two parallel pathways. The ventral occipito-temporal “what” pathway, or the “ventral stream,” has been linked with visual processing of form, object identity and color. Its counterpart is considered to be the dorsal occipito-parietal “where/how” pathway, or the “dorsal stream,” which analyzes visuo-spatial information about object location and participates in visuo-motor planning.

Although this double dissociation between the processing of the two streams has been thoroughly validated, what remained unclear was the role of visual experience in shaping this functional architecture of the brain. Does this fundamental large-scale organizational principle depend on visual experience?

Using sensory substitution, the Hebrew University scientists, led by Ph.D. student Ella Striem-Amit and Dr. Amedi, discovered that the visual cortex of the blind shows a similar dorsal/ventral visual pathway division-of-labor when perceiving sounds that convey the relevant visual information; e.g., when the blind are requested to identify either the location or the shape of an SSD “image,” they activate an area in the dorsal or in the ventral streams, respectively.

This shows that the most important large-scale organization of the visual system into the two streams can develop at least to some extent even without any visual experience, suggesting instead that this division-of-labor is not at all visual in its nature.

Recent research from Amedi’s lab and from other research groups have demonstrated that multiple brain areas are not specific to their input sense (vision, audition or touch), but rather to the task or computation they perform, which may be computed with various modalities.

Extending these finding to a large-scale division-of-labor of the visual system further contributes crucial information towards postulating that the whole brain may be task-specific rather than dependent on a specific sensory input. "The brain is not a sensory machine, although it often looks like one; it is a task machine," summed up Amedi.

These findings suggest that the blind brain can potentially be “awakened” to processing visual properties and tasks, even after lifelong blindness, with the aid of visual rehabilitation, using future medical advances, such as retinal prostheses, say the researchers. A summary of these ideas were published recently in a review in Current Opinion in Neurology by Lior Reich and Shachar Maidenbaum from Amedi’s lab.

A photo of Dr. Amedi wearing one of the SSD devices developed as the result of research in his lab is available at:.

http://media.huji.ac.il/new/photos/hu120207_sightfromsound.jpg

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>