Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Sound of Melanoma Can Help Doctors Find Cancer

Photoacoustics technology could make some lab processes more efficient, says MU researcher

Knowing the stage of a patient’s melanoma is important when choosing the best course of treatment. When the cancer has progressed to the lymph nodes, a more aggressive treatment is needed.

Examining an entire lymph node for cancer takes much effort and time; a new technique might help make the process more efficient. University of Missouri researchers in the Christopher S. Bond Life Sciences Center are studying how photoacoustics, or a laser-induced ultrasound, could help scientists locate the general area of the lymph node where melanoma cells could be residing. This new technology could help doctors identify the stage of melanoma with more accuracy.

“This method can be used to determine if the cancer has spread from stage 2, where the melanoma is still just in the skin lesion, to stage 3, where the melanoma has spread to the lymph nodes,” said John Viator, assistant professor in the Department of Biological Engineering[1] and Department of Dermatology[2]. “If the cancer is still at stage 2, a simple procedure can remove that lesion. If the cancer has progressed from the initial skin lesion into the lymphatic region and possibly the bloodstream, doctors have to make serious decisions about patient care. The cancer may have possibly spread to other organs, such as the liver, lungs or brain.”

Currently, pathologists must perform several specific and detailed tests to determine if there is cancer in the lymph nodes. This new technology could make the search less time-consuming by identifying a general area of the lymph node that might contain cancer.

“It’s very similar to identifying a prize inside a cake,” Viator said. “Instead of looking through the entire cake, we can use our ultrasound to pinpoint a slice or two that might contain the ‘prize.’ In the case of the lymph nodes, when you get a signal, this alerts the pathologist that this is an area of the node that might contain cancer cells. At that point, a pathologist would be able to narrow down the search, saving time and money.”

In the photoacoustic method, a tabletop device scans a lymph node biopsy with laser pulses. About 95 percent of melanoma cells contain melanin, the pigment that gives skin its color, so they react to the laser’s beam, absorbing the light. The laser causes the cells to heat and cool rapidly, which makes them expand and contract. This produces a popping noise that special sensors can detect. This method would examine the entire biopsy and identify the general area of the node that has cancer, giving pathologists a better idea of where to look for the cancer.

“This method is quicker and simpler and could be used to improve the efficiency of how doctors determine if the cancer has spread from the original skin lesion into the lymphatic system,” Viator said. “This technology could be an important tool in our fight against cancer.”

In the study, Viator took human cancer cells and placed them inside canine lymph nodes. Then, using the laser, he determined the best ways to locate the cancer cells. The next step is to try the procedure using human lymph nodes.

The study, “Photoacoustic Detection of Melanoma Micrometastatis in Sentinel Lymph Nodes,” was published in the Journal of Biomedical Engineering.

Kelsey Jackson | EurekAlert!
Further information:

Further reports about: Cancer Sound cancer cells lymph node melanoma melanoma cells new technology skin lesion

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>