Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Anti-Inflammatory Drugs Affect More Than Their Targets

22.08.2014

Discovery of changes to cell membranes has wide repercussions for drug developers

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved doses and/or for long periods of time, these prescription-level NSAIDs and other drugs that affect the membrane may produce wide-ranging and unwanted side effects.


courtesy of Cell Press, modified

A schematic showing that some drugs that affect cell membranes also increase the range of proteins cut by rhomboid proteases.

More positively, the researchers say, their work provides the basis for a test that drug developers can use to predict and perhaps avoid these side effects in new medicines they make. A summary of the results will be published online in the journal Cell Reports on Aug. 21.

“When drug designers think about possible sources of side effects, they tend to think about which proteins are similar to the protein they are targeting, and they make sure that the former are not affected by the drug,” says Sinisa Urban, Ph.D., an associate professor of molecular biology and genetics at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator. “But our group has found that drugs that affect the cell membrane can alter the activity of proteins that are totally unrelated to the target.”

Working with Syed Moin, then a postdoctoral fellow in his laboratory, Urban’s project began as an investigation into the role of the cell membrane in the activity of a group of “cellular scissors” embedded within it, known as rhomboid proteases. When rhomboid proteases cut proteins, the split proteins are released from the membrane. From there, half a protein might go on to signal to another cell or both halves might end up being degraded to prevent further functioning. It all depends on the jobs of the specific proteins that are cut, which are known to play roles in everything from malaria to Parkinson’s disease.

Urban says they had already learned that rhomboid proteases have an unusual way of “deciding” which proteins to cut: They look for those whose structures are unstable. Since some proteins are inherently more stable or less stable, rhomboid proteases have certain “protein clients” that are more or less likely to be cut.

Building on the fact that cell membranes provide some support to proteins embedded in them, Urban tried changing the physical properties of this “habitat” to see if alterations would change which proteins rhomboid proteases cut.

He did that by treating human cells with two chemicals that either made the membranes more flexible or distorted their shape. As suspected, rhomboid proteases started cutting proteins they don’t normally cut, namely amyloid-beta precursor protein (APP) and the signaling protein Delta, while continuing to cut their standard “clients.” This suggests that the enzymes had lost their ability to discriminate between clients and nonclients, or that nonclients started acting like clients when the cell membrane changed, Urban says.

Aware that many drugs end up in the cell membrane, Urban assessed the effect of certain drugs on rhomboid proteases’ ability to recognize their normal clients.

Recent studies have looked at the ability of certain prescription-only NSAIDs to repair the function of gamma-secretase, another membrane enzyme that has more than 100 different protein clients, the most famous of which is APP. When gamma-secretase cuts APP at the “wrong” site, it generates a short protein piece that clumps in the brain and goes on to cause Alzheimer’s disease.

According to those same studies, some prescription-level NSAIDs, like flurbiprofen, approved for treating serious arthritis, make gamma-secretase less likely to cut APP at the wrong site, but how they do so is unclear.

If the drugs alter gamma-secretase activity by changing its habitat, the researchers thought they might have a similar effect on rhomboid proteases. So Urban treated the cells with flurbiprofen, indomethacin and sulindac at high but similar concentrations to those found in the blood of patients taking them at approved doses. Rhomboid proteases again cut clients they shouldn’t, like APP and Delta, just as they had when treated with the membrane-altering chemicals.

When cells were treated with NSAIDS sold over-the-counter, like aspirin, ibuprofen and naproxen, however, the range of clients cut by rhomboid proteases increased only slightly, if at all.

To test the effect of the NSAIDs on cell membranes directly, Urban used an instrument that measures melting temperatures. Because membranes are composed primarily of fat molecules, heat can make them more fluid, like melting butter. In the same way that olive oil is a liquid at room temperature but shortening is a solid, the composition of molecules in the cell membrane can raise or lower the temperature at which it “melts.” A lower melting temperature means a more flexible membrane, and the researchers found that the same prescription-level NSAIDs that lowered the membrane’s melting temperature caused rhomboid proteases to cut nonclient proteins.

“It’s possible that some of the side effects of NSAIDs are caused by their effect on the membrane and its enzymes,” says Urban. “Our results are also a caution to drug developers trying to target new drugs to the membrane or hoping to increase the duration or dosage of already approved drugs. Throwing off the balance of the membrane has consequences.”

One of the benefits of this study is that the researchers’ method can be used to test new drugs for membrane-altering effects. “Now we can use rhomboid proteases as predictors of a drug’s possible effects on the membrane and its enzymes,” says Urban.

This work was supported by grants from the Howard Hughes Medical Institute, the David and Lucile Packard Foundation, and the National Institute of Allergy and Infectious Diseases (AI066025).

On the Web:

Link to article (live after embargo lifts): http://dx.doi.org/10.1016/j.celrep.2014.07.039

Urban Lab

Catherine Kolf | newswise

Further reports about: APP Medicine NSAIDs ability activity drugs enzymes gamma-secretase proteases proteins rhomboid temperature

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>