Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving biomedical problems by use of optical tools

21.03.2016

New career opportunities for junior scientists in research and high-tech development at the interface of optics and life sciences / Interdisciplinary master’s programme Medical Photonics will start in the winter term 2016/2017 at Jena University / Application period starts on April 1st

When Robert Koch discovered the tuberculosis pathogen more than 100 years ago he was using a Zeiss microscope equipped with an immersion lens developed by Ernst Abbe.


The new master's programm Medical Photonics at the University Jena will impart a broad basic knockledge and deep insights into microscopy, spectroscopy and diagnostics.

Photo: Michael Szabo/UKJ

Today physicochemists and intensive care physicians from Jena University work on novel spectroscopic techniques for infection diagnostics. All over the world, scientists are developing new optical methods in order to better understand life processes, and to facilitate early diagnosis and optimized treatment of widespread diseases like cancer or Alzheimer’s.

“Working in the field of Medical Photonics requires a broad basic knowledge in the field of bio-medicine as well as in natural sciences and mathematics – and of course also a deep insight in microscopy, spectroscopy and diagnostics including their clinical applications”, says Christoph Biskup, professor for biomolecular photonics at Jena University Hospital.

This statement is a precise summary of the new “Master of Science programme in Medical Photonics” offered at Jena University. The curriculum for the “Medical Photonics” master’s programme was developed at the Center for Medical Optics and Photonics by Biskup in collaboration with experts from the Medical Faculty, Faculty of Chemistry and Earth Sciences and the Faculty of Physics and Astronomy. The Medical Photonics master’s programme will start in the winter term 2016/2017.

International orientation – unique in Germany – characteristic for Jena

Christoph Biskup: „We’d like to address not only graduated bachelors of natural and life sciences but also physicians. Students will start with modules in human biology or physics and chemistry in order to strengthen their professional knowledge.” After that, basic courses in programming, digital imaging and statistics will be done, followed by modules for deepening the students’ skills.

Lectures and exercises are complemented by practical lab training. In the second year, students can focus on selected topics in fields of medical photonics such as microscopy, spectroscopy and clinical application of optical and photonic techniques. Integral part of the programme is also a scientific internship in a lab group at the university, at a non-university research institute or in a research-oriented company. Finally, the programme will be completed by preparing and defending the master thesis.

Since the new master’s programme is open for students from all over the world, all lectures will be given in English. “With its combination of optics and life sciences, this master’s programme is unique in Germany and rare on an international level”, says Christoph Biskup and emphasises the growing need for highly skilled graduates. “Our students will get to know optical methods as an important tool in biomedical research and clinical use, and they will not only be taught how to implement these methods but also how to further develop them. The master’s degree will qualify graduates for PhD programmes and of course for highly skilled jobs in research-oriented companies in the field of optics, medical devices and life sciences – in all these areas there is an increasing demand for highly qualified staff.”

Both career opportunities are possible internationally but also on-site in Jena: The Abbe School of Photonics and the Jena School of Molecular Medicine offer PhD-programmes, and the local optics and photonics industry has a high demand for specialists.

The master’s programme in a nutshell:
Admission requirements: first degree in Chemistry, Physics, Biology, Biochemistry/Molecular biology, Medicine or equivalent with at least a grade of “good”
Duration: 4 semesters (full time)
Fees: none
Teaching language: English
Application: 1 April to 31 May, to the Master-Service-Centre at Friedrich Schiller University Jena
Additional information: http://www.medpho.uniklinikum-jena.de/en.html

Contact:
Dr. Holger Babovsky
Programme coordinator
Tel.: +49-3641-947660
email: holger.babovsky[at]uni-jena.de

Prof. Dr. Christoph Biskup
Biomolecular Photonics Group
Friedrich Schiller University Jena / Jena University Hospital
Tel. +49 3641 9397800
email: christoph.biskup[at]uni-jena.de

Weitere Informationen:

http://www.medpho.uniklinikum-jena.de/en.html
http://www.master.uni-jena.de
http://www.uni-jena.de

Dr. Uta von der Gönna | Friedrich-Schiller-Universität Jena

Further reports about: Molecular Photonics biomedical problems optics physics spectroscopy

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>