Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving biomedical problems by use of optical tools

21.03.2016

New career opportunities for junior scientists in research and high-tech development at the interface of optics and life sciences / Interdisciplinary master’s programme Medical Photonics will start in the winter term 2016/2017 at Jena University / Application period starts on April 1st

When Robert Koch discovered the tuberculosis pathogen more than 100 years ago he was using a Zeiss microscope equipped with an immersion lens developed by Ernst Abbe.


The new master's programm Medical Photonics at the University Jena will impart a broad basic knockledge and deep insights into microscopy, spectroscopy and diagnostics.

Photo: Michael Szabo/UKJ

Today physicochemists and intensive care physicians from Jena University work on novel spectroscopic techniques for infection diagnostics. All over the world, scientists are developing new optical methods in order to better understand life processes, and to facilitate early diagnosis and optimized treatment of widespread diseases like cancer or Alzheimer’s.

“Working in the field of Medical Photonics requires a broad basic knowledge in the field of bio-medicine as well as in natural sciences and mathematics – and of course also a deep insight in microscopy, spectroscopy and diagnostics including their clinical applications”, says Christoph Biskup, professor for biomolecular photonics at Jena University Hospital.

This statement is a precise summary of the new “Master of Science programme in Medical Photonics” offered at Jena University. The curriculum for the “Medical Photonics” master’s programme was developed at the Center for Medical Optics and Photonics by Biskup in collaboration with experts from the Medical Faculty, Faculty of Chemistry and Earth Sciences and the Faculty of Physics and Astronomy. The Medical Photonics master’s programme will start in the winter term 2016/2017.

International orientation – unique in Germany – characteristic for Jena

Christoph Biskup: „We’d like to address not only graduated bachelors of natural and life sciences but also physicians. Students will start with modules in human biology or physics and chemistry in order to strengthen their professional knowledge.” After that, basic courses in programming, digital imaging and statistics will be done, followed by modules for deepening the students’ skills.

Lectures and exercises are complemented by practical lab training. In the second year, students can focus on selected topics in fields of medical photonics such as microscopy, spectroscopy and clinical application of optical and photonic techniques. Integral part of the programme is also a scientific internship in a lab group at the university, at a non-university research institute or in a research-oriented company. Finally, the programme will be completed by preparing and defending the master thesis.

Since the new master’s programme is open for students from all over the world, all lectures will be given in English. “With its combination of optics and life sciences, this master’s programme is unique in Germany and rare on an international level”, says Christoph Biskup and emphasises the growing need for highly skilled graduates. “Our students will get to know optical methods as an important tool in biomedical research and clinical use, and they will not only be taught how to implement these methods but also how to further develop them. The master’s degree will qualify graduates for PhD programmes and of course for highly skilled jobs in research-oriented companies in the field of optics, medical devices and life sciences – in all these areas there is an increasing demand for highly qualified staff.”

Both career opportunities are possible internationally but also on-site in Jena: The Abbe School of Photonics and the Jena School of Molecular Medicine offer PhD-programmes, and the local optics and photonics industry has a high demand for specialists.

The master’s programme in a nutshell:
Admission requirements: first degree in Chemistry, Physics, Biology, Biochemistry/Molecular biology, Medicine or equivalent with at least a grade of “good”
Duration: 4 semesters (full time)
Fees: none
Teaching language: English
Application: 1 April to 31 May, to the Master-Service-Centre at Friedrich Schiller University Jena
Additional information: http://www.medpho.uniklinikum-jena.de/en.html

Contact:
Dr. Holger Babovsky
Programme coordinator
Tel.: +49-3641-947660
email: holger.babovsky[at]uni-jena.de

Prof. Dr. Christoph Biskup
Biomolecular Photonics Group
Friedrich Schiller University Jena / Jena University Hospital
Tel. +49 3641 9397800
email: christoph.biskup[at]uni-jena.de

Weitere Informationen:

http://www.medpho.uniklinikum-jena.de/en.html
http://www.master.uni-jena.de
http://www.uni-jena.de

Dr. Uta von der Gönna | Friedrich-Schiller-Universität Jena

Further reports about: Molecular Photonics biomedical problems optics physics spectroscopy

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>