Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software predicted virus risk in California epidemic

12.08.2011
A computer model of the spread of West Nile virus was able to predict areas where human cases would be concentrated, especially around Sacramento in 2005. The success of the model, say researchers, depended on its focus on biological factors and on a high volume of reports from members of the public.

A computerized epidemiological model of the spread of the mosquito-borne West Nile virus in 17 counties of California in 2005 successfully predicted where 81.6 percent of human cases of the disease would arise and defined high-risk areas where the risk of infection turned out to be 39 times higher than in low-risk areas, according to newly published research. The DYCAST software used in those predictions is now open-source and is being applied to other diseases.

“One of the things that really differentiates DYCAST from other approaches is that it’s based on biological parameters,” said Ryan Carney, a Brown University graduate student who is the lead author on a paper about DYCAST’s performance that appears in the current issue of the journal Emerging Infectious Diseases, published by the Centers for Disease Control. “All of the parameters in the model are based on experimental data related to the biology and ecology of the virus, mosquito vector, and bird host.”

It’s not just tracking the geography of actual cases. DYCAST “is based on biological parameters.”For example, the spatial parameters of the model include how far mosquitoes and infected birds are likely to fly. Key time parameters include how long the virus needs to incubate in mosquitoes before they become infectious and the lifespan of infected birds. Carney said that by using biology to define the geographic and temporal attributes of the model rather than county or census tract borders, which are convenient for humans but irrelevant to birds and mosquitoes, the model allowed the California Department of Public Health to provide early warnings to an area stretching from the Bay Area through Sacramento to the Nevada line, as well as regions in southern California.

Carney implemented the software when he worked for the California department in 2005. (The software was created by Constandinos Theophilides at the City University of New York.) Feeding the model in 2005 were 109,358 dead bird reports phoned in or entered by members of the public via a state hotline and website.

As more dead birds were reported in close proximity, the software would generate daily maps of areas at high risk for human infection, providing an early warning to local public health officials. The software, for example, predicted areas as high-risk more than a month before the first human cases arose, on average.

In Sacramento County, location of the largest West Nile virus epidemic in the United States that year, DYCAST helped mosquito control officials target their testing and spraying resources — actions that ultimately reduced human illness, Carney said.

After 2005, the department implemented the model throughout the state, although the number of human cases and reported dead birds, along with the model’s prediction rates, dropped sharply.

In 2007 Carney enrolled as a master’s student at Yale and adapted the DYCAST model to track dengue fever in Brazil, using a version of the software that his CUNY collaborators had converted to an open-source platform. With the specific parameters of that disease, DYCAST was able to predict its spread in the city of Riberão Preto in Brazil, Carney said, citing unpublished data.

Carney has continued his analysis and development of DYCAST and dengue at Brown, where he is a doctoral student of ecology and evolutionary biology. He said the software at its core has potential to be adapted as an early warning system for other infectious diseases or even bioterrorism attacks.

In addition to Carney, other authors on the paper include Sean Ahearn and Alan McConchie of CUNY (McConchie is now at the University of British Columbia–Vancouver), Carol Glaser, Cynthia Jean, Kerry Padgett, Erin Parker, Ervic Aquino, and Vicki Kramer of the California Department of Public Health, and Chris Barker and Bborie Park of the University of California–Davis.

The Centers for Disease Control funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>