Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Softening arteries, protecting the heart

02.11.2012
Softening Arteries, Protecting the Heart: Penn Study Shows Underlying Connection Between "Good" Cholesterol and Collagen in Heart Health

Arterial stiffening has long been considered a major risk factor for cardiovascular disease. Keeping arteries soft and supple might reduce disease risk, but the mechanisms of how arteries stave off hardening has remained elusive.

Researchers from the Perelman School of Medicine, University of Pennsylvania, Wistar Institute, and The Children's Hospital of Philadelphia have discovered that the protein apolipoprotein E (apoE) plays a major role in maintaining arterial softness by suppressing production of the extracellular matrix, a network of connective tissue in the body. Their research appeared in the most recent issue of Cell Reports.

ApoE is a component of several lipoproteins, including HDL, the "good" cholesterol, and is generally believed to forestall atherosclerosis. But several recent major studies have questioned the link between HDL and cardiovascular protection. Meanwhile, other research involving cultured cells has indicated that apoE has effects beyond its role in regulating lipid levels as a component of HDL. The present work suggests that it may be the apoE-containing HDL that confers the main benefit of HDL by promoting arterial softness.

Analyzing genetic datasets of regular mice and mutant mice without apoE, the researchers showed definite differences in gene expression, with the apoE-null mice displaying marked increase in indicators of stiffening – the proteins collagen, fibronectin, and lysyl oxidase in response to stiffening in the aorta, which led to severe atherosclerosis. To attempt to mitigate the atherosclerosis seen in the apoE-null mice, the researchers fed them a high-fat diet and treated them with a lysyl oxidase inhibitor, which softened their arteries.

Despite highly elevated cholesterol, the mice showed a marked improvement in their atherosclerosis. The results suggest that the lack of apoE results in arterial stiffness, and that even with high cholesterol, increasing arterial elasticity by pharmacologic means can greatly reduce atherosclerotic disease.

"HDL can't be looked at as just one compound, because it is a mixture of different molecular components," explains senior author Richard K. Assoian, PhD, professor of Pharmacology. "The component that has these effects on arterial stiffening is a minor part of total HDL." Assoian notes that this could help to reconcile the conflicting clinical evidence regarding the link between HDL and reduced cardiovascular disease. "It might be the apoE HDL fraction that you need to keep high and not worry about the total HDL," he suggests. Because apoE is only about 6 percent of total HDL, "it could go up sky high or not at all, and you probably wouldn’t detect it in these studies that try to raise total HDL."

The possibility of preventing or treating atherosclerosis by promoting arterial elasticity independent of cholesterol could be a boon for the many people unable to tolerate the statin drugs that are the usual treatment.

"Perhaps there are other routes that you could use, independent of cholesterol and statins, that could help keep atherosclerosis at bay," says co-first author Devashish Kothapalli, PhD. "We think controlling stiffening is one of those. We showed in the paper that even when cholesterol is remarkably high, if you soften tissues back to a healthy level, atherosclerosis is inhibited."

Targeting arterial stiffening could also provide added benefit for patients already on statins. "Ultimately we would hope that controlling stiffening could be used in conjunction with a statin for the large percentage of people who are already on statins but need extra help," says co-first author Shu-Lin Liu, PhD.

Although the current study demonstrates how apoE and apoE-containing HDL promote cardiovascular health by maintaining arterial softness, Assoian notes that a practical treatment would likely not target apoE, because it "does a lot of other things that you don’t want to interfere with. So the goal in my mind would be to develop something that is really targeting stiffness but not affecting any of the lipid aspects of atherosclerosis that apoE and HDL control. The lysyl oxidase inhibitor drug we used in this study, BAPN, is good for proof of principle, but not useful on a practical level, because there are too many side effects."

This work was funded by the National Heart Lung and Blood Institute (Grants 66250, 22633, 56083, 093283)

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>