Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So... do you know what is in your water?

03.09.2014

Did you realize that there are more than 2 dozen flavors to water, not all of which are as yummy as say, rocky road ice cream?

Would you like your glass of water with a little iron it? Or do you prefer a copper taste? Possibly manganese? Did you realize that there are more than two dozen flavors to water, not all of which are as yummy as say, rocky road ice cream?


Amanda Sain, right, works with Andrea Dietrich, left, professor of civil and environmental engineering at Virginia Tech. Dietrich's research includes aspects of cancer therapy, obesity, health effects of certain elements in drinking water, and special risks to people over 50.

Credit: Virginia Tech

For several decades Andrea Dietrich, who trains utility staff and managers around the U.S. and across the globe on how to use sensory analysis to detect changes in water quality, has worked in the area of assessing taste, odor, and visual perception of chemical elements in water. Dietrich, a professor of civil and environmental engineering at Virginia Tech, has received numerous grants in this area, including one from the National Science Foundation. This $1.6 million contract asked her to investigate connections between corrosion of home plumbing materials, tastes-and-odors in drinking water, economics, and consumer health concerns.

For her research efforts, Dietrich has registered a number of firsts with journal papers reflecting her work on such diverse topics as: improving cancer therapy through odor and taste intervention; prevention and treatment of obesity by drinking more water; health effects of iron and copper in drinking water; and risks to people over 50 for unhealthy over-exposure to iron in water.

So when Amanda Sain of Concord, North Carolina, arrived as an environmental engineering graduate student at Virginia Tech, and she started reaching out to faculty, she found the public health element of Dietrich's work fascinating. In turn, Dietrich was able to secure funding for Sain's studies, using resources from the Institute for Critical Technology and Applied Science(ICTAS) and the Water INTERface Laboratory at the Blacksburg, Virginia University.

Sain's main project with Dietrich has focused primarily on a specific aspect of human health ¬– what is the impact of exposure to manganese in water and air. According to the Environmental Protection Agency, manganese is naturally ubiquitous in the environment, and exposure to low levels in one's diet is nutritionally essential. However, chronic exposure to high levels of manganese by inhalation in humans may result in central nervous systems effects. Children have exhibited some negative neurological impacts correlated with ingestion of manganese.

The EPA does allow a certain level of manganese in drinking water. To consumers, the permitted 0.05 milligrams per liter might seem non-existent. And interestingly, this amount is mostly for "aesthetic" reasons, Sain noted. This contaminant level was set, reportedly "based on bitter metallic taste, black-brown particles in water, and undesirable black or brown color of fixtures and laundry." But, in actuality, there is not a bitter metallic taste for manganese at that level, Sain and Dietrich revealed in a peer-reviewed journal paper, "Assessing taste and visual perception of Mn (II) and Mn (IV)." Undergraduate researcher Ashley Griffin of Franklin, Tennessee also contributed to the article that appeared in the January 2014 issue of the Journal of the American Water Works Association.

Mineral content in drinking water "is acknowledged to be the major chemical factor affecting taste and likeability of drinking water when no off-flavors are present," Sain and Dietrich wrote. But the problems occur when a mineral such as manganese is not detected by the human senses. They estimated that 50 percent of the population taste threshold for manganese II, the simplest ionic manganese oxide, to be more than 1000 times the current EPA allowable level. As it is "visually undetectable in drinking water, even at concentrations much greater than those typically found in groundwater…it could lead to ingestion of water with high manganese II concentrations."

With their findings, Sain and her adviser wondered about doubled contamination – water and air. They posed the question of what happens when one inhales a drinking water that is contaminated with manganese. Suppose the contaminated water is used to operate humidifiers in residential homes. The contaminants theoretically could be more than just the manganese, but they focused on this mineral as a starting point.

If the problem in the drinking water goes undetected, and then it is released into the air via the use of humidifiers, is it indeed a threat? If so, their findings could lead to "informed recommendations for the safe use of humidifiers and open the door to looking at water safety not only in the glass, but in the air as well," Sain said.

In the early part of 2014, Sain played an investigative role when the National Science Foundation awarded Dietrich a Rapid Response Grant to determine the overall effect of a chemical spill into the Elk River in West Virginia. In that study, they found that the nature of the chemicals that were released into the water subsequently became a problem with the air quality in nearby residents' homes.

Lynn Nystrom | Eurek Alert!
Further information:
http://www.vt.edu

Further reports about: EPA Foundation concentrations copper drinking exposure levels manganese materials metallic

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>