Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


So... do you know what is in your water?


Did you realize that there are more than 2 dozen flavors to water, not all of which are as yummy as say, rocky road ice cream?

Would you like your glass of water with a little iron it? Or do you prefer a copper taste? Possibly manganese? Did you realize that there are more than two dozen flavors to water, not all of which are as yummy as say, rocky road ice cream?

Amanda Sain, right, works with Andrea Dietrich, left, professor of civil and environmental engineering at Virginia Tech. Dietrich's research includes aspects of cancer therapy, obesity, health effects of certain elements in drinking water, and special risks to people over 50.

Credit: Virginia Tech

For several decades Andrea Dietrich, who trains utility staff and managers around the U.S. and across the globe on how to use sensory analysis to detect changes in water quality, has worked in the area of assessing taste, odor, and visual perception of chemical elements in water. Dietrich, a professor of civil and environmental engineering at Virginia Tech, has received numerous grants in this area, including one from the National Science Foundation. This $1.6 million contract asked her to investigate connections between corrosion of home plumbing materials, tastes-and-odors in drinking water, economics, and consumer health concerns.

For her research efforts, Dietrich has registered a number of firsts with journal papers reflecting her work on such diverse topics as: improving cancer therapy through odor and taste intervention; prevention and treatment of obesity by drinking more water; health effects of iron and copper in drinking water; and risks to people over 50 for unhealthy over-exposure to iron in water.

So when Amanda Sain of Concord, North Carolina, arrived as an environmental engineering graduate student at Virginia Tech, and she started reaching out to faculty, she found the public health element of Dietrich's work fascinating. In turn, Dietrich was able to secure funding for Sain's studies, using resources from the Institute for Critical Technology and Applied Science(ICTAS) and the Water INTERface Laboratory at the Blacksburg, Virginia University.

Sain's main project with Dietrich has focused primarily on a specific aspect of human health ¬– what is the impact of exposure to manganese in water and air. According to the Environmental Protection Agency, manganese is naturally ubiquitous in the environment, and exposure to low levels in one's diet is nutritionally essential. However, chronic exposure to high levels of manganese by inhalation in humans may result in central nervous systems effects. Children have exhibited some negative neurological impacts correlated with ingestion of manganese.

The EPA does allow a certain level of manganese in drinking water. To consumers, the permitted 0.05 milligrams per liter might seem non-existent. And interestingly, this amount is mostly for "aesthetic" reasons, Sain noted. This contaminant level was set, reportedly "based on bitter metallic taste, black-brown particles in water, and undesirable black or brown color of fixtures and laundry." But, in actuality, there is not a bitter metallic taste for manganese at that level, Sain and Dietrich revealed in a peer-reviewed journal paper, "Assessing taste and visual perception of Mn (II) and Mn (IV)." Undergraduate researcher Ashley Griffin of Franklin, Tennessee also contributed to the article that appeared in the January 2014 issue of the Journal of the American Water Works Association.

Mineral content in drinking water "is acknowledged to be the major chemical factor affecting taste and likeability of drinking water when no off-flavors are present," Sain and Dietrich wrote. But the problems occur when a mineral such as manganese is not detected by the human senses. They estimated that 50 percent of the population taste threshold for manganese II, the simplest ionic manganese oxide, to be more than 1000 times the current EPA allowable level. As it is "visually undetectable in drinking water, even at concentrations much greater than those typically found in groundwater…it could lead to ingestion of water with high manganese II concentrations."

With their findings, Sain and her adviser wondered about doubled contamination – water and air. They posed the question of what happens when one inhales a drinking water that is contaminated with manganese. Suppose the contaminated water is used to operate humidifiers in residential homes. The contaminants theoretically could be more than just the manganese, but they focused on this mineral as a starting point.

If the problem in the drinking water goes undetected, and then it is released into the air via the use of humidifiers, is it indeed a threat? If so, their findings could lead to "informed recommendations for the safe use of humidifiers and open the door to looking at water safety not only in the glass, but in the air as well," Sain said.

In the early part of 2014, Sain played an investigative role when the National Science Foundation awarded Dietrich a Rapid Response Grant to determine the overall effect of a chemical spill into the Elk River in West Virginia. In that study, they found that the nature of the chemicals that were released into the water subsequently became a problem with the air quality in nearby residents' homes.

Lynn Nystrom | Eurek Alert!
Further information:

Further reports about: EPA Foundation concentrations copper drinking exposure levels manganese materials metallic

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>