Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail fever expected to decline in Africa due to climate change

13.12.2013
Research The dangerous parasite Schistosoma mansoni that causes snail fever in humans could become significantly less common in the future a new international study led by researchers from the University of Copenhagen predicts.
The results are surprising because they contradict the general assumption that climate change leads to greater geographical spread of diseases. The explanation is that the parasite’s host snails stand to lose suitable habitat due to climate change.

“Our research shows that the expected effects of climate change will lead to a reduction in suitable habitats for four out of five species of host snails for the parasite. According to our models, several areas will become too hot for the snails in the future and new precipitation patterns will affect the freshwater areas where they live”, says postdoc Anna -Sofie Stensgaard from the Danish National Research Foundation Center for Macroecology, Evolution and Climate at the University of Copenhagen.

Several of the freshwater snails acting as intermediate host for the schistosomiasis parasite, are predicted to have fewer climatically suitable habitat areas in the future. Photo: Henry Madsen, Department of Veterinary Disease Biology.

Schistosomiasis is an infectious disease caused by parasitic flatworms of the genus Schistosoma.

They infect humans by penetrating the skin when in contact with water. They spread in freshwater areas such as rivers and lakes where fresh water snails act as intermediate host for the parasite's larvae.

Therefore, the snails’ habitats are of great importance for the spread of the disease.

Up to 19 % reduction in infectious areas

The researchers modeled the changes in snail habitat from today to 2080 under various climate change scenarios, and what that will mean for the spread of the parasite. The forecasts show up to 19 % reduction in the total geographical area of infection risk in Africa, as the geographical distribution of the main host snail will be reduced significantly.

“Our results are consistent with the scientific view that climate change leads to lower biodiversity, but not that climate change necessarily leads to a greater spread of diseases”, Anna -Sofie Stensgaard explains about the study that has just been published in the scientific journal Acta Tropica.

New areas at risk

Even though the overall infection is predicted to decline in Africa, the study also identifies some areas where the disease could spread. Senior researcher Thomas Kristensen from the Department of Veterinary Disease Biology explains:

“Our models are not designed to pinpoint changes on a local scale but they provide an overall picture of a decline in areas suitable for the parasite in West and Central Africa, while it may be able to establish itself in new areas especially in Africa's southern regions.”

In addition, climate change will affect the host snails differently and one of the studied species actually stands to benefit from the changes. The study underlines that it is essential to include biological knowledge of different host species in the models to gain robust future scenarios for the spread of diseases.

Climate is not everything

The research also shows, however, that climate is not necessarily the most important factor for the spread of diseases such as snail fever. Natural and human-induced changes of the snails’ habitats, which are difficult to predict, may also play a very important role.

Humans are infected with schistosomiasis in freshwater areas like these, where freshwater snails act as intermediate hosts for the parasite. Photo Henry Madsen, Department of Veterinary Disease Biology. Download free press photo.

“Over results highlights that especially anthropogenic environmental change - in combination with climatic factors - is crucial for the present distribution of host snails in Africa”, concludes Anna -Sofie Stensgaard.

This is consistent with other studies showing that man-made changes in the environment such as the damming of rivers, irrigation of fields and construction of large water reservoirs can create new habitats for the snails, which could in turn increase the risk of infection.

The research was conducted in collaboration with researchers from Switzerland, Zambia, Uganda and Cameroon.

Contact

Post doc Anna -Sofie Stensgaard, mobile: +45 26297650
Senior researcher Thomas Kristensen, mobile: +45 40503674
Communications officer Elisabeth Wulffeld, mobile: +45 21179140

Anna-Sofie Stensgaard | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>