Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail fever expected to decline in Africa due to climate change

13.12.2013
Research The dangerous parasite Schistosoma mansoni that causes snail fever in humans could become significantly less common in the future a new international study led by researchers from the University of Copenhagen predicts.
The results are surprising because they contradict the general assumption that climate change leads to greater geographical spread of diseases. The explanation is that the parasite’s host snails stand to lose suitable habitat due to climate change.

“Our research shows that the expected effects of climate change will lead to a reduction in suitable habitats for four out of five species of host snails for the parasite. According to our models, several areas will become too hot for the snails in the future and new precipitation patterns will affect the freshwater areas where they live”, says postdoc Anna -Sofie Stensgaard from the Danish National Research Foundation Center for Macroecology, Evolution and Climate at the University of Copenhagen.

Several of the freshwater snails acting as intermediate host for the schistosomiasis parasite, are predicted to have fewer climatically suitable habitat areas in the future. Photo: Henry Madsen, Department of Veterinary Disease Biology.

Schistosomiasis is an infectious disease caused by parasitic flatworms of the genus Schistosoma.

They infect humans by penetrating the skin when in contact with water. They spread in freshwater areas such as rivers and lakes where fresh water snails act as intermediate host for the parasite's larvae.

Therefore, the snails’ habitats are of great importance for the spread of the disease.

Up to 19 % reduction in infectious areas

The researchers modeled the changes in snail habitat from today to 2080 under various climate change scenarios, and what that will mean for the spread of the parasite. The forecasts show up to 19 % reduction in the total geographical area of infection risk in Africa, as the geographical distribution of the main host snail will be reduced significantly.

“Our results are consistent with the scientific view that climate change leads to lower biodiversity, but not that climate change necessarily leads to a greater spread of diseases”, Anna -Sofie Stensgaard explains about the study that has just been published in the scientific journal Acta Tropica.

New areas at risk

Even though the overall infection is predicted to decline in Africa, the study also identifies some areas where the disease could spread. Senior researcher Thomas Kristensen from the Department of Veterinary Disease Biology explains:

“Our models are not designed to pinpoint changes on a local scale but they provide an overall picture of a decline in areas suitable for the parasite in West and Central Africa, while it may be able to establish itself in new areas especially in Africa's southern regions.”

In addition, climate change will affect the host snails differently and one of the studied species actually stands to benefit from the changes. The study underlines that it is essential to include biological knowledge of different host species in the models to gain robust future scenarios for the spread of diseases.

Climate is not everything

The research also shows, however, that climate is not necessarily the most important factor for the spread of diseases such as snail fever. Natural and human-induced changes of the snails’ habitats, which are difficult to predict, may also play a very important role.

Humans are infected with schistosomiasis in freshwater areas like these, where freshwater snails act as intermediate hosts for the parasite. Photo Henry Madsen, Department of Veterinary Disease Biology. Download free press photo.

“Over results highlights that especially anthropogenic environmental change - in combination with climatic factors - is crucial for the present distribution of host snails in Africa”, concludes Anna -Sofie Stensgaard.

This is consistent with other studies showing that man-made changes in the environment such as the damming of rivers, irrigation of fields and construction of large water reservoirs can create new habitats for the snails, which could in turn increase the risk of infection.

The research was conducted in collaboration with researchers from Switzerland, Zambia, Uganda and Cameroon.

Contact

Post doc Anna -Sofie Stensgaard, mobile: +45 26297650
Senior researcher Thomas Kristensen, mobile: +45 40503674
Communications officer Elisabeth Wulffeld, mobile: +45 21179140

Anna-Sofie Stensgaard | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>