Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New smoking cessation therapy proves promising

01.03.2010
A novel technology for delivering nicotine to the lungs may soon give smokers a new way to kick the habit.

When compared to the nicotine vapor delivery system used in the Nicotrol/Nicorette inhaler, the new technology proved more effective at delivering nicotine to the blood stream. As a result, it provides immediate relief of withdrawal symptoms, according to Duke University Medical Center researchers. Users also reported the new nicotine delivery method was more tolerable than the current inhaler because it caused less throat irritation.

"We wanted to replicate the experience of smoking without incurring the dangers associated with cigarettes, and we wanted to do so more effectively than the nicotine replacement therapies currently on the market," said Jed Rose, Ph.D., director of the Duke Center for Nicotine and Smoking Cessation Research where the technology is being developed. He presented the data today at the Society for Nicotine and Tobacco Research (SRNT) in Baltimore, MD.

The Nicotrol inhaler is a smoking cessation therapy that delivers nicotine vapor to the mouth and upper airways, but little of it reaches the lungs.

Duke's new technology employs a unique method to deliver nicotine to the lungs. In today's presentation, the researchers show the new lung delivery technology results in rapid absorption of nicotine that provides immediate relief of withdrawal symptoms and also re-creates some of the familiar sensations that are pleasurable to smokers.

Current methods that deliver medicine to the lungs -- metered dose sprays, dry powder inhalers or nebulizers that create a fine mist – do not replicate the natural inhalation used by smokers when drawing on a cigarette. And, because medication residue often deposits in the mouth and throat, doses aren't always high enough to ensure the appropriate amount reaches the lungs.

Duke's new technology combines the vapor phase of pyruvic acid, which occurs naturally in the body, and nicotine. "When the two vapors combine, they form a salt called nicotine pyruvate," explains Rose. "This reaction transforms invisible gas vapors into a cloud of microscopic particles which is inhaled, just like a smoker inhales from a cigarette."

In a study of the new Duke technology, nine healthy smokers inhaled 10 puffs of nicotine pyruvate in increasing doses, 10 puffs from a Nicotrol/Nicorette inhaler cartridge, and 10 puffs of room air (placebo). Blood was drawn before and after each set of inhalations. When the results were analyzed, the Duke researchers noted rapid increases in plasma nicotine concentrations following the nicotine pyruvate inhalations and less complaints of harshness/irritation when compared to the Nicotrol/Nicorette control cartridge. The smokers also said their cravings for cigarettes were substantially alleviated following the nicotine pyruvate inhalations.

"Compared to the current nicotine vapor inhaler, we are able to give smokers more nicotine, although still less than a cigarette, with less irritation, resulting in reduced cravings," said Rose. "Thus we are able to achieve a therapeutic effect with greater tolerability."

More research is needed to examine the safety and effectiveness of prolonged use of the inhalation system, and to assess its role in helping people quit smoking. But, Rose says if all goes well, he anticipates the product could become commercially available within three to five years.

He also says the novel inhalation system may one day prove useful for delivery of other medications. Duke has filed patent applications on the new technology, which was invented by Rose and his colleagues, including his brother, Seth D. Rose, Ph.D., Duke colleague, Thangaraju Murugesan, Ph.D., and James E. Turner, an inventor of the Nicotrol/Nicorette inhaler.

Collaborators on the project included Turner, Murugesan, and Frederique M. Behm of Duke University Medical Center, Chris J. Wynne, of the Christchurch Clinical Studies Trust, Christchurch, New Zealand, and Murray Laugesen, of Health New Zealand Ltd., Christchurch, New Zealand.

Debbe Geiger | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>