Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Anticancer "Nanofiber Mesh"

03.07.2013
A MANA research team has developed a new nanofiber mesh which is capable of simultaneously realizing thermotherapy (hyperthermia) and chemotherapy (treatment with anticancer drugs) of tumors. They succeeded in efficiently inducing natural death (apoptosis) of epithelial cancer cells.

Success in Inducing Natural Death of Epithelial Cancer Cells by Simultaneously Realizing Thermotherapy and Chemotherapy


Cancer treatment using the nanofiber mesh with self-heating/anticancer drug release functions.

A research team headed by Dr. Mitsuhiro Ebara, a MANA Scientist of the Biomaterials Unit (Unit Director: Takao Aoyagi) of the International Center for Materials Nanoarchitectonics (Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda) developed a new nanofiber mesh which is capable of simultaneously realizing thermotherapy (hyperthermia) and chemotherapy (treatment with anticancer drugs) of tumors. Using this nanofiber mesh, the team succeeded in efficiently inducing natural death (apoptosis) of epithelial cancer cells.

Squamous cell carcinoma (SCC) is an epithelial malignant tumor, and is found in many tissues. For example, SCC is thought to account for more than 90% of esophageal cancers, more than 80% of the cervical cancers, and more than 30% of lung cancers.

Although surgery, radiation therapy, and chemotherapy are now three main therapeutic methods according to the stages of cancers, in addition to these methods, thermotherapy has also attracted great attention in recent years. This is because it is possible to induce extinction of cancer cells by heat, as cancer cells are relatively susceptible to heat in comparison with normal cells. It has also been found that thermotherapy enhances the effect of anticancer drugs when used in conjunction with chemotherapy. However, when actually applying thermotherapy and administering anticancer drugs, the two independent therapies must be applied separately, and until now, precise control to realize treatment at the same time and same location had been difficult.

In this research, the team led by Dr. Ebara overcame this problem and succeeded in development of a method for simultaneously performing thermotherapy and chemotherapy of epithelial malignant tumors. The team developed a mesh material which is applied directly to the affected part, and is a hybrid material that combines a temperature-responsive polymer, magnetic nanoparticles, and anticancer drugs.
Although magnetic thermotherapy techniques which administer magnetic nanoparticles directly in the body have been developed previously, the difficulty of handling nanoparticles and the concerns regarding the safety of the magnetic nanoparticles themselves are the problems. The developed nanofiber mesh is easy to handle and can also be used in endoscopic surgery, etc. Moreover, because the magnetic particles contained in the fibers exist stably, diffusion in the body is minimized. For this reason, the developed method is considered to offer higher safety in comparison with methods in which magnetic particles are administered directly.

As the nanofiber mesh contains magnetic nanoparticles, which are a self-heating substance, it is possible to heat the fibers by applying an alternating magnetic field. Furthermore, the temperature-responsive polymer contracts in response to the heat generated by the magnetic nanoparticles, enabling release of the anticancer drugs contained in the nanofiber mesh. When the anticancer activity of this fiber was investigated using a human melanoma cell strain, it was found that ON-OFF control of inducement of apoptosis of the cancer cells was possible by applying an alternating magnetic field.
In 21st century, time-space control of the treatment of diseases is required. That is, it should be possible to administer drugs, etc. at an arbitrary timing and location. Because the newly-developed nanofiber mesh enables simultaneous ON-OFF control of heating of the affected part and drug release, simply by applying an external stimulus, it is considered to be a major advance in the development of next-generation therapeutic materials for 21st century medicine.

Journal information
This research achievement had been announced in the online bulletin of the scientific journal "Advanced Functional Materials" on June 14, 2013.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/06/p201306140.html
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>