Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Even the smallest stroke can damage brain tissue and impair cognitive function

Blocking a single tiny blood vessel in the brain can harm neural tissue and even alter behavior, a new study from the University of California, San Diego has shown.

But these consequences can be mitigated by a drug already in use, suggesting treatment that could slow the progress of dementia associated with cumulative damage to miniscule blood vessels that feed brain cells. The team reports their results in the December 16 advance online edition of Nature Neuroscience.

A single arteriole, highlighted in yellow, dives from the surface of the brain at the top of the image to penetrate a column of brain tissue. Blocking just one such vessel can damage the brain and lead to a focused cognitive defect, a new study has shown.

Credit: David Kleinfeld Lab, UC San Diego

"The brain is incredibly dense with vasculature. It was surprising that blocking one small vessel could have a discernable impact on the behavior of a rat," said Andy Y. Shih, lead author of the paper who completed this work as a postdoctoral fellow in physics at UC San Diego. Shih is now an assistant professor at the Medical University of South Carolina.

Working with rats, Shih and colleagues used laser light to clot blood at precise points within small blood vessels that dive from the surface of the brain to penetrate neural tissue. When they looked at the brains up to a week later, they saw tiny holes reminiscent of the widespread damage often seen when the brains of patients with dementia are examined as a part of an autopsy.

These micro-lesions are too small to be detected with conventional MRI scans, which have a resolution of about a millimeter. Nearly two dozen of these small vessels enter the brain from a square millimeter area of the surface of the brain.

"It's controversial whether that sort of damage has consequences, although the tide of evidence has been growing as human diagnostics improve," said David Kleinfeld, professor of physics and neurobiology, who leads the research group.

To see whether such minute damage could change behavior, the scientists trained thirsty rats to leap from one platform to another in the dark to get water.

The rats readily jump if they can reach the second platform with a paw or their snout, or stretch farther to touch it with their whiskers. Many rats can be trained to rely on a single whisker if the others are clipped, but if they can't feel the far platform, they won't budge.

"The whiskers line up in rows and each one is linked to a specific spot in the brain," Shih said. "By training them to use just one whisker, we were able to distill a behavior down to a very small part of the brain."

When Shih blocked single microvessels feeding a column of brain cells that respond to signals from the remaining whisker, the rats still crossed to the far platform when the gap was small. But when it widened beyond the reach of their snouts, they quit.

The FDA-approved drug memantine, prescribed to slow one aspect of memory decline associated with Alzheimer's disease, ameliorated these effects. Rats that received the drug jumped whisker-wide gaps, and their brains showed fewer signs of damage.

"This data shows us, for the first time, that even a tiny stroke can lead to disability," said Patrick D. Lyden, a co-author of the study and chair of the department of neurology at Cedars-Sinai Medical Center in Los Angeles. "I am afraid that tiny strokes in our patients contribute—over the long term—to illness such as dementia and Alzheimer's disease," he said, adding that "better tools will be required to tell whether human patients suffer memory effects from the smallest strokes."

"We used powerful tools from biological physics, many developed in Kleinfeld's laboratory at UC San Diego, to link stroke to dementia on the unprecedented small scale of single vessels and cells," Shih said. "At my new position at MUSC, I plan to work on ways to improve the detection of micro-lesions in human patients with MRI. This way clinicians may be able to diagnose and treat dementia earlier." --Susan Brown

Additional authors include Pablo Blinder, Beth Friedman, Geoffrey Stanley and Philbert S. Tsai, all at UC San Diego. The National Institutes of Biomedical Imaging and Bioengineering, Mental Health, and Neurological Disease and Stroke provided primary funding through grants to Kleinfeld (EB003832, MH085499, and OD006831). Shih was further supported by a postdoctoral fellowship from the American Heart Association.

David Kleinfeld | EurekAlert!
Further information:

Further reports about: Alzheimer MRI MRI scan Medical Wellness blood vessel brain cell

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>