Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small peptide found to stop lung cancer tumor growth in mice

28.08.2009
In new animal research done by investigators at Wake Forest University School of Medicine, scientists have discovered a treatment effective in mice at blocking the growth and shrinking the size of lung cancer tumors, one of the leading causes of cancer death in the world.

The study, recently published in Molecular Cancer Therapeutics, a journal of the American Association for Cancer Research, is the first to show that treatment with a specific peptide, angiotensin-(1-7), reduces lung tumor growth by inhibiting blood vessel formation.

"If you're diagnosed with lung cancer today, you've got a 15 percent chance of surviving five years – and that's just devastating," said co-lead investigator Patricia E. Gallagher, Ph.D., director of the Molecular Biology Core Laboratory in the Hypertension and Vascular Research Center at the School of Medicine. "Those other 85 people – 85 percent – they're not going to see their kids graduate. They're not going to see their children get married."

The lung cancer survival rate has changed little in the past 30 years, said Gallagher's co-lead investigator, E. Ann Tallant, Ph.D., a professor in the Hypertension and Vascular Research Center – a fact that motivates them in their research.

Peptides, found in all animals, are compounds formed by linking one or more amino acids together through the sharing of electrons. They are among the building blocks of life. Peptides can perform a wide range of functions in the body, depending on which amino acids are involved. Some can regulate hormones, for example, while others can have an antibiotic function.

Angiotensin-(1-7) is a small peptide that binds to proteins on the surface of cells and prevents cell growth – but only if the cell is actively growing when the binding occurs. That property is what led Tallant and Gallagher to explore the peptide's uses for treating cancer by blocking tumor growth.

Angiotensin-(1-7) works by inhibiting the production of signals sent out by a cancer tumor for food. For tumors to grow, they need nutrients delivered by blood vessels. The signals they send prompt blood vessels to grow and invade the tumor to feed it.

Every day during the six-week study, researchers injected either saline or the angiotensin (1-7) peptide into mice growing human lung cancer tumors. Over the course of the study, the tumors treated with angiotensin-(1-7) shrunk, while the saline-treated tumors grew and, at the end of the study, the tumors treated with angiotensin-(1-7) weighed about 60 percent less than the tumors treated with saline. Analysis also showed that the tumors from mice treated with the peptide had significantly fewer blood vessels compared to the tumors from the saline-treated animals.

The researchers further tested angiotensin (1-7)'s affect on blood vessel formation, or angiogenesis, by treating chick embryos with the peptide – a procedure considered the gold standard for determining anti-angiogenic ability. They found that blood vessels continued to grow in a saline-injected control group, while blood vessel formation decreased by more than 50 percent in the embryos treated with angiotensin-(1-7).

Tallant and Gallagher said the treatment likely has applications beyond lung cancer – they have collected data showing it is effective on breast, colon and brain tumors, as well.

The treatment also presents an attractive possibility for future human cancer therapy from a cost perspective, they said.

"Because it's a peptide, it's very small and can be made very easily," Gallagher said. "We sometimes like to say we're the aspirin of cancer therapy."

Co-investigators on the study were graduate students David R. Soto-Pantoja and Jyotsana Menon of the School of Medicine. The study was funded by the Susan G. Komen Breast Cancer Research Foundation, Department of Defense, National Institutes of Health, Unifi, Farley-Hudson Foundation, and Golfers Against Cancer of the Triad.

The first clinical trial of angiotensin-(1-7) has been completed at the School of Medicine and the results are currently being reviewed.

Media Relations Contacts: Jessica Guenzel, jguenzel@wfubmc.edu, (336) 716-3487; Bonnie Davis, bdavis@wfubmc.edu, (336) 716-4977; or Shannon Koontz, shkoontz@wfubmc.edu, (336) 716-2415.

Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children's Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university's School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of "America's Best Hospitals" by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America's Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>