Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small peptide found to stop lung cancer tumor growth in mice

28.08.2009
In new animal research done by investigators at Wake Forest University School of Medicine, scientists have discovered a treatment effective in mice at blocking the growth and shrinking the size of lung cancer tumors, one of the leading causes of cancer death in the world.

The study, recently published in Molecular Cancer Therapeutics, a journal of the American Association for Cancer Research, is the first to show that treatment with a specific peptide, angiotensin-(1-7), reduces lung tumor growth by inhibiting blood vessel formation.

"If you're diagnosed with lung cancer today, you've got a 15 percent chance of surviving five years – and that's just devastating," said co-lead investigator Patricia E. Gallagher, Ph.D., director of the Molecular Biology Core Laboratory in the Hypertension and Vascular Research Center at the School of Medicine. "Those other 85 people – 85 percent – they're not going to see their kids graduate. They're not going to see their children get married."

The lung cancer survival rate has changed little in the past 30 years, said Gallagher's co-lead investigator, E. Ann Tallant, Ph.D., a professor in the Hypertension and Vascular Research Center – a fact that motivates them in their research.

Peptides, found in all animals, are compounds formed by linking one or more amino acids together through the sharing of electrons. They are among the building blocks of life. Peptides can perform a wide range of functions in the body, depending on which amino acids are involved. Some can regulate hormones, for example, while others can have an antibiotic function.

Angiotensin-(1-7) is a small peptide that binds to proteins on the surface of cells and prevents cell growth – but only if the cell is actively growing when the binding occurs. That property is what led Tallant and Gallagher to explore the peptide's uses for treating cancer by blocking tumor growth.

Angiotensin-(1-7) works by inhibiting the production of signals sent out by a cancer tumor for food. For tumors to grow, they need nutrients delivered by blood vessels. The signals they send prompt blood vessels to grow and invade the tumor to feed it.

Every day during the six-week study, researchers injected either saline or the angiotensin (1-7) peptide into mice growing human lung cancer tumors. Over the course of the study, the tumors treated with angiotensin-(1-7) shrunk, while the saline-treated tumors grew and, at the end of the study, the tumors treated with angiotensin-(1-7) weighed about 60 percent less than the tumors treated with saline. Analysis also showed that the tumors from mice treated with the peptide had significantly fewer blood vessels compared to the tumors from the saline-treated animals.

The researchers further tested angiotensin (1-7)'s affect on blood vessel formation, or angiogenesis, by treating chick embryos with the peptide – a procedure considered the gold standard for determining anti-angiogenic ability. They found that blood vessels continued to grow in a saline-injected control group, while blood vessel formation decreased by more than 50 percent in the embryos treated with angiotensin-(1-7).

Tallant and Gallagher said the treatment likely has applications beyond lung cancer – they have collected data showing it is effective on breast, colon and brain tumors, as well.

The treatment also presents an attractive possibility for future human cancer therapy from a cost perspective, they said.

"Because it's a peptide, it's very small and can be made very easily," Gallagher said. "We sometimes like to say we're the aspirin of cancer therapy."

Co-investigators on the study were graduate students David R. Soto-Pantoja and Jyotsana Menon of the School of Medicine. The study was funded by the Susan G. Komen Breast Cancer Research Foundation, Department of Defense, National Institutes of Health, Unifi, Farley-Hudson Foundation, and Golfers Against Cancer of the Triad.

The first clinical trial of angiotensin-(1-7) has been completed at the School of Medicine and the results are currently being reviewed.

Media Relations Contacts: Jessica Guenzel, jguenzel@wfubmc.edu, (336) 716-3487; Bonnie Davis, bdavis@wfubmc.edu, (336) 716-4977; or Shannon Koontz, shkoontz@wfubmc.edu, (336) 716-2415.

Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children's Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university's School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of "America's Best Hospitals" by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America's Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>