Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sleepwalkers sometimes remember what they've done

Antonio Zadra of the University of Montreal discusses his Lancet Neurology article

Three myths about sleepwalking – sleepwalkers have no memory of their actions, sleepwalkers' behaviour is without motivation, and sleepwalking has no daytime impact – are dispelled in a recent study led by Antonio Zadra of the University of Montreal and its affiliated Sacré-Coeur Hospital.

Working from numerous studies over the last 15 years at the hospital's Centre for Advanced Studies in Sleep Medicine at the Hôpital du Sacré-Cœur de Montréal and a thorough analysis of the literature, Zadra and his colleagues have raised the veil on sleepwalking and clarified the diagnostic criteria for researchers and clinicians. Their findings were published in Lancet Neurology.

Journalists are welcome to use the following responses in their own reports. Interviews and further information (including the original French text of this document) can be obtained by contacting media relations at the University of Montreal. The University of Montreal is officially known as Université de Montréal.

Question: What are the causes and consequences of sleepwalking?
A.Z.: "Several indicators suggest that a genetic factor is involved. In 80% of sleepwalkers, a family history of sleepwalking exists. The concordance of sleepwalking is five times higher in monozygotic twins compared to non-identical twins. Our studies have also shown that lack of sleep and stress can lead to sleepwalking. Any situation that disrupts sleep can result in sleepwalking episodes in predisposed individuals."

A.Z.: "Most sleepwalking episodes are harmless. Apart from the fact that the deep slow-wave sleep of sleepwalkers is fragmented, wanderings are usually brief and pose no danger, or when they do, it is minimal. In rare cases, wandering episodes may be longer, and sleepwalkers may injure themselves and put themselves or others in danger: some have even gone as far as driving a car!"

Question: It is said that the sleep disorder mainly affects children. Is this true?

A.Z.: "Many children transitionally sleepwalk between 6 and 12 years of age. It is thought that passing from sleep to wakefulness requires a certain maturation of the brain. In some children, the brain may have difficulty making this transition. Often, the problem disappears after puberty. But sleepwalking may persist into adulthood in almost 25% of cases. It decreases with age, however, because the older you get, the fewer hours of deep slow-wave sleep you enjoy, which is the stage in which sleepwalking episodes occur."

A.Z.: "Both children and adults are in a state of so-called dissociated arousal during wandering episodes: parts of the brain are asleep while others are awake. There are elements of wakefulness since sleepwalkers can perform actions such as washing, opening and closing doors, or going down stairs. Their eyes are open and they can recognize people. But there are also elements specific to sleep: sleepwalkers' judgment and their ability for self-thought are altered, and their behavioural reactions are nonsensical."

Question: According to you, the idea that people are partially awake and partially asleep is something that must be considered in conceptualizing sleepwalking?

A.Z.: "Absolutely. This is one of the points we outline in our article. There are increasing signs that even in normal subjects the brain does not fall asleep in a single block all at once. Sleep may occur in a localized manner. Parts of the brain can fall asleep before others."

Question: This may explain why the amnesia of sleepwalkers is not always complete. But can sleepwalkers really remember their actions while sleeping vertically?

A.Z.: "Yes. In children and adolescents, amnesia is more frequent, probably due to neurophysiological reasons. In adults, a high proportion of sleepwalkers occasionally remember what they did during their sleepwalking episodes. Some even remember what they were thinking and the emotions they felt."

Question: Your work has also shown that the behaviour of sleepwalkers is not simply automatic. Can you explain?

A.Z.: "This is another popular myth. There is a misconception that sleepwalkers do things without knowing why. However, there is a significant proportion of sleepwalkers who remember what they have done and can explain the reasons for their actions. They are the first to say, once awake, that their explanations are nonsensical. However, during the episode, there is an underlying rationale. For example, a man once took his dog that had been sleeping at the foot of his bed to the bathtub to douse it with water. He thought his dog was on fire! There was neither the logic nor the judgment typical of wakefulness. But the behaviour was not automatic in the sense that a motivation accompanied and explained the action."

Question: Another myth you are interested in relates to impact on the waking state. According to you, beyond the nocturnal phenomenon, sleepwalking is associated with diurnal disorders characterized by somnolence.

A.Z.: "Around 45% of sleepwalkers are clinically somnolent during the day. Younger sleepwalkers are able to hide it more easily. Compared to control subjects, however, they perform less well in vigilance tests. And if given the opportunity to take a nap, they fall asleep faster than normal subjects do."

A.Z.: "Over the last few years, we have shown that the deep slow-wave sleep of sleepwalkers is atypical. Fragmented by numerous micro-arousals of 3 to 10 seconds, their sleep is less restorative. Sleepwalking is therefore not only a problem of transitioning between deep sleep and wakefulness. There is something more fundamental in their sleep every night, whether or not they have sleepwalking episodes."

Reference: Antonio Zadra, Alex Desautels, Dominique Petit, Jacques Montplaisir, Somnambulism: clinical aspects and pathophysiological hypotheses, The Lancet Neurology, Volume 12, Issue 3, March 2013, Pages 285-294, ISSN 1474-4422, 10.1016/S1474-4422(12)70322-8.

William Raillant-Clark | EurekAlert!
Further information:

Further reports about: Neurology Sleepwalkers sleep

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>