Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleepwalkers sometimes remember what they've done

14.03.2013
Antonio Zadra of the University of Montreal discusses his Lancet Neurology article

Three myths about sleepwalking – sleepwalkers have no memory of their actions, sleepwalkers' behaviour is without motivation, and sleepwalking has no daytime impact – are dispelled in a recent study led by Antonio Zadra of the University of Montreal and its affiliated Sacré-Coeur Hospital.

Working from numerous studies over the last 15 years at the hospital's Centre for Advanced Studies in Sleep Medicine at the Hôpital du Sacré-Cœur de Montréal and a thorough analysis of the literature, Zadra and his colleagues have raised the veil on sleepwalking and clarified the diagnostic criteria for researchers and clinicians. Their findings were published in Lancet Neurology.

Journalists are welcome to use the following responses in their own reports. Interviews and further information (including the original French text of this document) can be obtained by contacting media relations at the University of Montreal. The University of Montreal is officially known as Université de Montréal.

Question: What are the causes and consequences of sleepwalking?
A.Z.: "Several indicators suggest that a genetic factor is involved. In 80% of sleepwalkers, a family history of sleepwalking exists. The concordance of sleepwalking is five times higher in monozygotic twins compared to non-identical twins. Our studies have also shown that lack of sleep and stress can lead to sleepwalking. Any situation that disrupts sleep can result in sleepwalking episodes in predisposed individuals."

A.Z.: "Most sleepwalking episodes are harmless. Apart from the fact that the deep slow-wave sleep of sleepwalkers is fragmented, wanderings are usually brief and pose no danger, or when they do, it is minimal. In rare cases, wandering episodes may be longer, and sleepwalkers may injure themselves and put themselves or others in danger: some have even gone as far as driving a car!"

Question: It is said that the sleep disorder mainly affects children. Is this true?

A.Z.: "Many children transitionally sleepwalk between 6 and 12 years of age. It is thought that passing from sleep to wakefulness requires a certain maturation of the brain. In some children, the brain may have difficulty making this transition. Often, the problem disappears after puberty. But sleepwalking may persist into adulthood in almost 25% of cases. It decreases with age, however, because the older you get, the fewer hours of deep slow-wave sleep you enjoy, which is the stage in which sleepwalking episodes occur."

A.Z.: "Both children and adults are in a state of so-called dissociated arousal during wandering episodes: parts of the brain are asleep while others are awake. There are elements of wakefulness since sleepwalkers can perform actions such as washing, opening and closing doors, or going down stairs. Their eyes are open and they can recognize people. But there are also elements specific to sleep: sleepwalkers' judgment and their ability for self-thought are altered, and their behavioural reactions are nonsensical."

Question: According to you, the idea that people are partially awake and partially asleep is something that must be considered in conceptualizing sleepwalking?

A.Z.: "Absolutely. This is one of the points we outline in our article. There are increasing signs that even in normal subjects the brain does not fall asleep in a single block all at once. Sleep may occur in a localized manner. Parts of the brain can fall asleep before others."

Question: This may explain why the amnesia of sleepwalkers is not always complete. But can sleepwalkers really remember their actions while sleeping vertically?

A.Z.: "Yes. In children and adolescents, amnesia is more frequent, probably due to neurophysiological reasons. In adults, a high proportion of sleepwalkers occasionally remember what they did during their sleepwalking episodes. Some even remember what they were thinking and the emotions they felt."

Question: Your work has also shown that the behaviour of sleepwalkers is not simply automatic. Can you explain?

A.Z.: "This is another popular myth. There is a misconception that sleepwalkers do things without knowing why. However, there is a significant proportion of sleepwalkers who remember what they have done and can explain the reasons for their actions. They are the first to say, once awake, that their explanations are nonsensical. However, during the episode, there is an underlying rationale. For example, a man once took his dog that had been sleeping at the foot of his bed to the bathtub to douse it with water. He thought his dog was on fire! There was neither the logic nor the judgment typical of wakefulness. But the behaviour was not automatic in the sense that a motivation accompanied and explained the action."

Question: Another myth you are interested in relates to impact on the waking state. According to you, beyond the nocturnal phenomenon, sleepwalking is associated with diurnal disorders characterized by somnolence.

A.Z.: "Around 45% of sleepwalkers are clinically somnolent during the day. Younger sleepwalkers are able to hide it more easily. Compared to control subjects, however, they perform less well in vigilance tests. And if given the opportunity to take a nap, they fall asleep faster than normal subjects do."

A.Z.: "Over the last few years, we have shown that the deep slow-wave sleep of sleepwalkers is atypical. Fragmented by numerous micro-arousals of 3 to 10 seconds, their sleep is less restorative. Sleepwalking is therefore not only a problem of transitioning between deep sleep and wakefulness. There is something more fundamental in their sleep every night, whether or not they have sleepwalking episodes."

Reference: Antonio Zadra, Alex Desautels, Dominique Petit, Jacques Montplaisir, Somnambulism: clinical aspects and pathophysiological hypotheses, The Lancet Neurology, Volume 12, Issue 3, March 2013, Pages 285-294, ISSN 1474-4422, 10.1016/S1474-4422(12)70322-8.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Neurology Sleepwalkers sleep

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>