Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleepwalkers sometimes remember what they've done

14.03.2013
Antonio Zadra of the University of Montreal discusses his Lancet Neurology article

Three myths about sleepwalking – sleepwalkers have no memory of their actions, sleepwalkers' behaviour is without motivation, and sleepwalking has no daytime impact – are dispelled in a recent study led by Antonio Zadra of the University of Montreal and its affiliated Sacré-Coeur Hospital.

Working from numerous studies over the last 15 years at the hospital's Centre for Advanced Studies in Sleep Medicine at the Hôpital du Sacré-Cœur de Montréal and a thorough analysis of the literature, Zadra and his colleagues have raised the veil on sleepwalking and clarified the diagnostic criteria for researchers and clinicians. Their findings were published in Lancet Neurology.

Journalists are welcome to use the following responses in their own reports. Interviews and further information (including the original French text of this document) can be obtained by contacting media relations at the University of Montreal. The University of Montreal is officially known as Université de Montréal.

Question: What are the causes and consequences of sleepwalking?
A.Z.: "Several indicators suggest that a genetic factor is involved. In 80% of sleepwalkers, a family history of sleepwalking exists. The concordance of sleepwalking is five times higher in monozygotic twins compared to non-identical twins. Our studies have also shown that lack of sleep and stress can lead to sleepwalking. Any situation that disrupts sleep can result in sleepwalking episodes in predisposed individuals."

A.Z.: "Most sleepwalking episodes are harmless. Apart from the fact that the deep slow-wave sleep of sleepwalkers is fragmented, wanderings are usually brief and pose no danger, or when they do, it is minimal. In rare cases, wandering episodes may be longer, and sleepwalkers may injure themselves and put themselves or others in danger: some have even gone as far as driving a car!"

Question: It is said that the sleep disorder mainly affects children. Is this true?

A.Z.: "Many children transitionally sleepwalk between 6 and 12 years of age. It is thought that passing from sleep to wakefulness requires a certain maturation of the brain. In some children, the brain may have difficulty making this transition. Often, the problem disappears after puberty. But sleepwalking may persist into adulthood in almost 25% of cases. It decreases with age, however, because the older you get, the fewer hours of deep slow-wave sleep you enjoy, which is the stage in which sleepwalking episodes occur."

A.Z.: "Both children and adults are in a state of so-called dissociated arousal during wandering episodes: parts of the brain are asleep while others are awake. There are elements of wakefulness since sleepwalkers can perform actions such as washing, opening and closing doors, or going down stairs. Their eyes are open and they can recognize people. But there are also elements specific to sleep: sleepwalkers' judgment and their ability for self-thought are altered, and their behavioural reactions are nonsensical."

Question: According to you, the idea that people are partially awake and partially asleep is something that must be considered in conceptualizing sleepwalking?

A.Z.: "Absolutely. This is one of the points we outline in our article. There are increasing signs that even in normal subjects the brain does not fall asleep in a single block all at once. Sleep may occur in a localized manner. Parts of the brain can fall asleep before others."

Question: This may explain why the amnesia of sleepwalkers is not always complete. But can sleepwalkers really remember their actions while sleeping vertically?

A.Z.: "Yes. In children and adolescents, amnesia is more frequent, probably due to neurophysiological reasons. In adults, a high proportion of sleepwalkers occasionally remember what they did during their sleepwalking episodes. Some even remember what they were thinking and the emotions they felt."

Question: Your work has also shown that the behaviour of sleepwalkers is not simply automatic. Can you explain?

A.Z.: "This is another popular myth. There is a misconception that sleepwalkers do things without knowing why. However, there is a significant proportion of sleepwalkers who remember what they have done and can explain the reasons for their actions. They are the first to say, once awake, that their explanations are nonsensical. However, during the episode, there is an underlying rationale. For example, a man once took his dog that had been sleeping at the foot of his bed to the bathtub to douse it with water. He thought his dog was on fire! There was neither the logic nor the judgment typical of wakefulness. But the behaviour was not automatic in the sense that a motivation accompanied and explained the action."

Question: Another myth you are interested in relates to impact on the waking state. According to you, beyond the nocturnal phenomenon, sleepwalking is associated with diurnal disorders characterized by somnolence.

A.Z.: "Around 45% of sleepwalkers are clinically somnolent during the day. Younger sleepwalkers are able to hide it more easily. Compared to control subjects, however, they perform less well in vigilance tests. And if given the opportunity to take a nap, they fall asleep faster than normal subjects do."

A.Z.: "Over the last few years, we have shown that the deep slow-wave sleep of sleepwalkers is atypical. Fragmented by numerous micro-arousals of 3 to 10 seconds, their sleep is less restorative. Sleepwalking is therefore not only a problem of transitioning between deep sleep and wakefulness. There is something more fundamental in their sleep every night, whether or not they have sleepwalking episodes."

Reference: Antonio Zadra, Alex Desautels, Dominique Petit, Jacques Montplaisir, Somnambulism: clinical aspects and pathophysiological hypotheses, The Lancet Neurology, Volume 12, Issue 3, March 2013, Pages 285-294, ISSN 1474-4422, 10.1016/S1474-4422(12)70322-8.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Neurology Sleepwalkers sleep

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>