Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep Creeps Up: No Top-Down Control for Sleep and Wakefulness

11.11.2008
Feeling sleepy?

That’s because parts of your brain are actually asleep, according to a new theoretical paper by sleep scientists at Washington State University.

Contrary to conventional wisdom, the researchers say, there’s no control center in your brain that dictates when it’s time for you to drift off to dreamland. Instead, sleep creeps up on you as independent groups of brain cells become fatigued and switch into a sleep state even while you are still (mostly) awake. Eventually, a threshold number of groups switch and you doze off.

Lead author James Krueger said the view of sleep as an “emergent property” explains familiar experiences that the top-down model doesn’t, such as sleepwalking, in which a person is able to navigate around objects while being unconscious, and sleep inertia, the sluggishness we feel upon waking up in the morning.

“If you explain it in terms of bits and pieces of the brain, instead of a top-down phenomenon, all of a sudden you can make sense of these things,” said Krueger. “The old paradigm doesn’t even address these things.”

Krueger teamed with fellow neurobiologists David Rector, Hans Van Dongen, Gregory Belenky, Jaak Panksepp and electrical engineer Sandip Roy on the work. Their paper, “Sleep as a fundamental property of neuronal assemblies,” will appear in the December issue of Nature Reviews/Neuroscience. It is available online at http://www.nature.com/nrn/journal/vaop/ncurrent/pdf/nrn2521.html.

If sleep were being directed by a control center, the whole brain would respond at the same time, said Krueger. Instead, it behaves like a self-directing orchestra in which most sections are more-or-less in sync, but a few race ahead or lag behind at any given time.

During sleepwalking, he said, the neuronal groups needed for balance are in a wake state while those needed for consciousness are in a sleep state. Conversely, in sleep inertia, enough neuronal groups are in a wake state for you to be awake in a general sense, but some groups are still in a sleep state—enough to hamper your ability to perform tasks.

“Everybody has sleep inertia every morning,” said Krueger. “It takes 30 minutes to an hour to recuperate from being asleep” and get all your neuronal groups up and running.

The authors drew on evidence from several lines of research to develop their hypothesis.

For example, a group of brain cells that work together to perform a certain function become less responsive and switch into a sleep-like state after the cells have been active for a long time. The likelihood that a given group of cells will enter the sleep state is proportional to how long it has been “awake” and how active it has been—in other words, how hard it has been working.

Also, while you are awake, the cerebrospinal fluid bathing your brain accumulates proteins called Sleep Regulatory Substances, or SRSs. When the level of SRSs gets high enough, you go to sleep. Putting a drop of an SRS onto a neuronal group causes that group to enter the sleep state, showing that sleep can occur in a group of a few hundred cells without affecting the rest of the brain.

Sleep researchers have long wondered how neuronal activity, which is measured in milliseconds, interacts with SRSs, which persist for hours or days. How do they coordinate to produce a coherent sleep response?

The authors cited numerous studies showing that when neurons transmit electrical signals to each other, they also release ATP, a small chemical best known as an energy source for cells. The ATP causes cells called glia to produce SRSs, which in turn enter nearby neurons and activate a cascade of other chemicals that affect how the neurons respond to neurotransmitters.

“It’s a long-term change in sensitivity,” in the range of hours, said Krueger. “You’ve got to think in terms of hundreds of these operating simultaneously in a network. If you’re changing the sensitivity of the [neuron], and you have the same input coming into the cell, what happens? You’ve got a different output in the network for the same input. And that, by definition, is a state shift. So now we’ve got a complete mechanism” connecting neuronal activity, the production of Sleep Regulatory Substances and the occurrence of sleep.

As a final piece of the puzzle, co-author Sandip Roy developed a mathematical model accounting for the experimental finding that when one neuronal group goes into a sleep-like state, neighboring groups become more likely to do so. The same happens when a sleeping group returns to wakefulness; its communications with its neighbors prompt them to “wake up” as well. The model showed that as communication among groups spreads, it can lead to the global synchronization that causes the whole animal to go to sleep.

Krueger said such behavior is typical of all sorts of coordinated networks of functional units that operate mostly independently.

“Whether it’s an engineered system or whether it’s fireflies glowing on a summer’s evening, they tend to synchronize,” he said.

Krueger added that the classic brain “sleep centers” still have a role in the new paradigm. They coordinate the sleep-like and waking-like states of neuronal groups to help the organism adapt to its surroundings (such as whether it’s light or dark out) and achieve peak performance.

The paper’s authors research many major aspects of sleep biology. Krueger studies the biochemistry of sleep; Rector explores the connections between neuronal activity and sleep/wake cycles; Van Dongen and Belenky study the relations between sleep and human performance; Panksepp studies the mechanisms of instinctual emotional and motivational behaviors; and Roy models network formation and coordination of action among independent units.

James Krueger, Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, 509-335-8212, james_krueger@wsu.edu

Cherie Winner | Newswise Science News
Further information:
http://www.wsu.edu

Further reports about: SRS Wakefulness brain cells dreamland sleep sleepwalking

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>