Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than skin deep, tanning product of sun's rays

22.06.2010
People who remain pale and never tan can blame their distant ancestors for choosing to live in the northern reaches of the globe and those who easily achieve a deep tan can thank their ancestors for living in the subtropical latitudes, according to Penn State anthropologists.

"The variation of ultraviolet radiation, especially in the middle and high latitudes is great," said Nina Jablonski, professor of anthropology and chair of Penn State's anthropology department. "Tanning has evolved multiple times around the world as a mechanism to partly protect humans from harmful effects of ultraviolet radiation."

Jablonski, working with George Chaplin, senior research associate in anthropology and an expert in geographic information systems, looked at the way the sun illuminates different parts of the Earth. They looked at levels and angles of incidence of both ultraviolet A and B radiation at various latitudes. Ultraviolet B radiation is much more variable than ultraviolet A as latitude increases due to atmospheric scattering of the light and absorption by oxygen.

Ultraviolet B radiation produces vitamin D in human skin. Ultraviolet radiation can, however, destroy folate. Folate is important for the rapid growth of cells, especially during pregnancy where its deficiency can cause neural tube defects.

"What we now recognize is that some of the medical problems seen in darkly pigmented people may be linked at some level to vitamin D deficiency," said Jablonski. "Things like certain types of cancer in darkly pigmented people and in people who use a lot of sunscreen or always stay inside could be partly related to vitamin D deficiency."

Scientists have understood for years that evolutionary selection of skin pigmentation was caused by the sun. As human ancestors gradually lost their pelts to allow evaporative cooling through sweating, their naked skin was directly exposed to sunlight. In the tropics, where human ancestors evolved and where both ultraviolet radiations are high throughout the year, natural selection created darkly pigmented individuals to protect against the sun.

"Past arguments about the selective value of dark pigmentation focused on the protective effects of melanin against sunburn, skin cancer, and overproduction of vitamin D. These factors can no longer be considered significant selective pressures," the Jablonski and Chaplin report in a recent issue of the Proceedings of the National Academy of Sciences.

Sunburn and most skin cancers do not alter an individual's ability to procreate, so they are not selection factors. The human body also has a mechanism to prevent overproduction of vitamin D.

Previously, the researchers concluded that dark skin pigmentation in the tropics protects people from folate destruction by ultraviolet B, but, because levels of ultraviolet B are high year round, the skin can still allow enough in to manufacture vitamin D.

As humans moved out of Africa, they moved into the subtropics and eventually inhabited areas up to the Arctic Circle. Ultraviolet radiation in these areas is neither consistent nor strong. North or south of 46 degrees latitude, which includes all of Canada, Russia, Scandinavia, Western Europe and Mongolia, there is insufficient ultraviolet B through most of the year to produce vitamin D. Populations in these areas evolved to have little skin pigmentation.

In the latitudes between 23 and 46 degrees, an area that encompasses North Africa, South America, the Mediterranean and most of China, ultraviolet B radiation is much more variable. Heavily pigmented skin in the winter would block the development of vitamin D, and lightly pigmented skin during the summer would allow destruction of folate.

"We actually demonstrate that in those middle latitudes where highly fluctuating levels of ultraviolet radiation occur throughout the year, tanning has evolved multiple times as a mechanism to partly protect humans from harmful effect of the sun," said Jablonski.

The tanning process evolved for humans who by and large were naked all the time. As the ultraviolet B radiation began to increase in the early spring, the skin would begin to gradually darken. As the sun became stronger, the tan became deeper. During the winter, as ultraviolet B waned, so did the tan, allowing Vitamin D production and protecting folate.

The researchers note that the ability to tan developed in a wide variety of peoples and while the outcome, tanablity, is the same, the underlying genetic mechanisms are not necessarily identical. They also note that depigmentated skin also developed at least three times through different genetic mechanisms.

Implications for today focus on the fact that depigmented people now live in tropical and subtropical areas where besides getting sunburned they run the risk of losing folate. Highly pigmented people live in higher latitudes where they may become vitamin D deficient, especially if they use sunscreens.

"It is a conspiracy of modernity," said Jablonski. "The rapidity at which we can move long distances and live far away from our ancestral homelands. The fact that we can live and work indoors. All this has happened within the last 500 years and especially within the last 200 years."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>