Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One size does not fit all

A new look at therapies

Statins, a commonly prescribed class of drugs used by millions worldwide to effectively lower blood cholesterol levels, may actually have a negative impact in Multiple Sclerosis (MS) patients treated with high daily dosages.

A new study by researchers at the Montreal Neurological Institute (MNI), McGill University, demonstrates that statin therapy in mice inhibits myelin repair or remyelination in the central nervous system. The findings, published in The American Journal of Pathology, highlight the crucial need to monitor the effects of central nervous system-accessible immune therapies on the myelin repair processes in patients with MS and other progressive demyelinating diseases.

Canadians have one of the highest rates of MS in the world. An estimated 50, 000 Canadians have MS, with approximately 1,000 new cases diagnosed each year. MS is an autoimmune disease of the central nervous system (CNS), in which immune cells attack the myelin sheath (the protective insulation of nerve fibres), and the myelin-producing cells of the CNS (oligodendrocytes), causing demyelination. This causes damage which disrupts the nerve cell's ability to transmit signals throughout the nervous system.

In the early stages of MS, following an immune system attack on myelin, oligodendrocyte progenitor cells or stem cells in the CNS are recruited to the lesion. These cells mature and produce new myelin to repair the damage.

"Statins, which are known to modify the immune system response and have a wide array of effects on other cellular processes, were propelled into clinical trials based on studies in an animal model of MS indicating a reduction in clinical disease severity," says Dr. Veronique Miron, post-doctoral fellow in Dr. Jack Antel's lab at the MNI, and lead investigator in the study. "The mechanism of statin action in these studies was not determined. That is, does statin directly effect myelin and/or the oligodendrocytes or is disease severity reduced indirectly due to the dampening of the immune response. This issue required further investigation, particularly due to the ability of statins to cross the blood-brain barrier and access the CNS, and the enrichment of cholesterol in the myelin sheath."

The objective of the MNI study was to determine the direct impact of simvastatin, a statin in clinical trials, on the integrity of myelin in the brain and on the remyelination process. The study uses a model of myelin damage that has relatively little inflammation and mimics the demyelinating aspect of MS, allowing MNI researchers to determine the direct effect of long-term statin therapy on remyelination, independent of its indirect effects mediated via immune modulation.

"The results of our study indicate that simvastatin has in fact, a slightly deleterious effect on myelin under non-pathological conditions," adds Dr. Miron. "During remyelination, there is a decrease not only in myelin production but also in oligodendrocyte number as a result of simvastatin treatment. The findings also suggest that simvastatin inhibits CNS remyelination by blocking oligodendrocyte progenitor cell differentiation or maturation into myelinating oligodendrocytes."

This study underscores the necessity of monitoring the long-terms effects of CNS accessible immune therapies, particularly those that can impact cell types that are postulated to be targeted in neurological disease processes and that are implicated in any brain tissue repair processes. Understanding the underlying mechanisms of these therapies will lead to improved and enhanced treatment strategies and ultimately improved quality of life for people who suffer from a variety of neurological diseases.

This work was supported by grants from the Foundation of the Multiple Sclerosis Society of Canada, The National Multiple Sclerosis Society and the Canadian Institutes of Health Research.

About the Montreal Neurological Institute and Hospital

The Montreal Neurological Institute and Hospital (The Neuro) is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Anita Kar | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>