Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One size does not fit all

27.05.2009
A new look at therapies

Statins, a commonly prescribed class of drugs used by millions worldwide to effectively lower blood cholesterol levels, may actually have a negative impact in Multiple Sclerosis (MS) patients treated with high daily dosages.

A new study by researchers at the Montreal Neurological Institute (MNI), McGill University, demonstrates that statin therapy in mice inhibits myelin repair or remyelination in the central nervous system. The findings, published in The American Journal of Pathology, highlight the crucial need to monitor the effects of central nervous system-accessible immune therapies on the myelin repair processes in patients with MS and other progressive demyelinating diseases.

Canadians have one of the highest rates of MS in the world. An estimated 50, 000 Canadians have MS, with approximately 1,000 new cases diagnosed each year. MS is an autoimmune disease of the central nervous system (CNS), in which immune cells attack the myelin sheath (the protective insulation of nerve fibres), and the myelin-producing cells of the CNS (oligodendrocytes), causing demyelination. This causes damage which disrupts the nerve cell's ability to transmit signals throughout the nervous system.

In the early stages of MS, following an immune system attack on myelin, oligodendrocyte progenitor cells or stem cells in the CNS are recruited to the lesion. These cells mature and produce new myelin to repair the damage.

"Statins, which are known to modify the immune system response and have a wide array of effects on other cellular processes, were propelled into clinical trials based on studies in an animal model of MS indicating a reduction in clinical disease severity," says Dr. Veronique Miron, post-doctoral fellow in Dr. Jack Antel's lab at the MNI, and lead investigator in the study. "The mechanism of statin action in these studies was not determined. That is, does statin directly effect myelin and/or the oligodendrocytes or is disease severity reduced indirectly due to the dampening of the immune response. This issue required further investigation, particularly due to the ability of statins to cross the blood-brain barrier and access the CNS, and the enrichment of cholesterol in the myelin sheath."

The objective of the MNI study was to determine the direct impact of simvastatin, a statin in clinical trials, on the integrity of myelin in the brain and on the remyelination process. The study uses a model of myelin damage that has relatively little inflammation and mimics the demyelinating aspect of MS, allowing MNI researchers to determine the direct effect of long-term statin therapy on remyelination, independent of its indirect effects mediated via immune modulation.

"The results of our study indicate that simvastatin has in fact, a slightly deleterious effect on myelin under non-pathological conditions," adds Dr. Miron. "During remyelination, there is a decrease not only in myelin production but also in oligodendrocyte number as a result of simvastatin treatment. The findings also suggest that simvastatin inhibits CNS remyelination by blocking oligodendrocyte progenitor cell differentiation or maturation into myelinating oligodendrocytes."

This study underscores the necessity of monitoring the long-terms effects of CNS accessible immune therapies, particularly those that can impact cell types that are postulated to be targeted in neurological disease processes and that are implicated in any brain tissue repair processes. Understanding the underlying mechanisms of these therapies will lead to improved and enhanced treatment strategies and ultimately improved quality of life for people who suffer from a variety of neurological diseases.

This work was supported by grants from the Foundation of the Multiple Sclerosis Society of Canada, The National Multiple Sclerosis Society and the Canadian Institutes of Health Research.

About the Montreal Neurological Institute and Hospital

The Montreal Neurological Institute and Hospital (The Neuro) is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.mni.mcgill.ca

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>