Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single traumatic brain injury may prompt long-term neurodegeneration

19.07.2011
A single traumatic brain injury may prompt long-term neurodegeneration, Penn study shows

Years after a single traumatic brain injury (TBI), survivors still show changes in their brains. In a new study, researchers from the Perelman School of Medicine at the University of Pennsylvania suggest that Alzheimer's disease-like neurodegeneration may be initiated or accelerated following a single traumatic brain injury, even in young adults.

Over 1.7 million Americans suffer a traumatic brain injury each year, and beyond the immediate effects, growing evidence demonstrates that a single TBI may initiate long-term processes that further damage the brain. TBI is an established risk factor for later development of cognitive impairments, such as Alzheimer's disease.

"A single traumatic brain injury is very serious, both initially, and as we're now learning, even later in life," said Douglas Smith, MD, professor of Neurosurgery and director of the Center for Brain Injury and Repair at Penn's Perelman School of Medicine, the study's co-senior author. "Plaques and tangles are appearing abnormally early in life, apparently initiated or accelerated by a single TBI."

The study appears online in Brain Pathology, and was done in conjunction with neuropathologist Dr. William Stewart, from the University of Glasgow and Southern General Hospital in Glasgow, UK.

The researchers found both tau tangles and amyloid-beta plaques in survivors, years after a single moderate-to-severe TBI. In repetitive head injury, previous studies have shown a tau accumulation as the signature pathology of a condition called chronic traumatic encephalopathy. In studies of people less than 4 weeks after dying from a single TBI, no similar tau pathology was found. In addition, while widespread amyloid-beta plaques have been found in about 30 percent of people shortly after injury, previous work showed that plaques disappeared within months.

In this study, researchers examined post-mortem brains from 39 long-term survivors of a single TBI, extending the survival time from 1-47 years survival after TBI, and compared them to uninjured, age-matched controls.

TBI survivors showed a high density and wide distribution of neurofibrillary tau tangles and amyloid-beta plaque pathology far beyond what was found in controls. Specifically, about a third of the cases showed tangle pathology years after a single TBI, similar in appearance to the tangles found after repetitive TBI and in neurodegenerative diseases such as Alzheimer's disease. Moreover, the amyloid-beta plaques were not only found years after TBI, but the majority of cases displayed diffuse as well as "neuritic" plaques with the same character as "senile" plaques also found in Alzheimer's disease. This suggests that years after a single TBI, amyloid-beta plaques may return and become neuritic.

The present findings, showing that two hallmark pathologies of Alzheimer's disease can be found years after a single TBI, may provide a pathological link with the epidemiological observation of an increased risk of developing Alzheimer's disease. Moreover, future research to better understand this long-term neurodegenerative process after a single TBI may reveal important targets for treatment with emerging anti-tau and anti-amyloid therapies.

The study was funded by the U.S. National Institutes of Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>