Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single traumatic brain injury may prompt long-term neurodegeneration

19.07.2011
A single traumatic brain injury may prompt long-term neurodegeneration, Penn study shows

Years after a single traumatic brain injury (TBI), survivors still show changes in their brains. In a new study, researchers from the Perelman School of Medicine at the University of Pennsylvania suggest that Alzheimer's disease-like neurodegeneration may be initiated or accelerated following a single traumatic brain injury, even in young adults.

Over 1.7 million Americans suffer a traumatic brain injury each year, and beyond the immediate effects, growing evidence demonstrates that a single TBI may initiate long-term processes that further damage the brain. TBI is an established risk factor for later development of cognitive impairments, such as Alzheimer's disease.

"A single traumatic brain injury is very serious, both initially, and as we're now learning, even later in life," said Douglas Smith, MD, professor of Neurosurgery and director of the Center for Brain Injury and Repair at Penn's Perelman School of Medicine, the study's co-senior author. "Plaques and tangles are appearing abnormally early in life, apparently initiated or accelerated by a single TBI."

The study appears online in Brain Pathology, and was done in conjunction with neuropathologist Dr. William Stewart, from the University of Glasgow and Southern General Hospital in Glasgow, UK.

The researchers found both tau tangles and amyloid-beta plaques in survivors, years after a single moderate-to-severe TBI. In repetitive head injury, previous studies have shown a tau accumulation as the signature pathology of a condition called chronic traumatic encephalopathy. In studies of people less than 4 weeks after dying from a single TBI, no similar tau pathology was found. In addition, while widespread amyloid-beta plaques have been found in about 30 percent of people shortly after injury, previous work showed that plaques disappeared within months.

In this study, researchers examined post-mortem brains from 39 long-term survivors of a single TBI, extending the survival time from 1-47 years survival after TBI, and compared them to uninjured, age-matched controls.

TBI survivors showed a high density and wide distribution of neurofibrillary tau tangles and amyloid-beta plaque pathology far beyond what was found in controls. Specifically, about a third of the cases showed tangle pathology years after a single TBI, similar in appearance to the tangles found after repetitive TBI and in neurodegenerative diseases such as Alzheimer's disease. Moreover, the amyloid-beta plaques were not only found years after TBI, but the majority of cases displayed diffuse as well as "neuritic" plaques with the same character as "senile" plaques also found in Alzheimer's disease. This suggests that years after a single TBI, amyloid-beta plaques may return and become neuritic.

The present findings, showing that two hallmark pathologies of Alzheimer's disease can be found years after a single TBI, may provide a pathological link with the epidemiological observation of an increased risk of developing Alzheimer's disease. Moreover, future research to better understand this long-term neurodegenerative process after a single TBI may reveal important targets for treatment with emerging anti-tau and anti-amyloid therapies.

The study was funded by the U.S. National Institutes of Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>