Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simple spit and blood tests might detect burnout before it happens

Your blood and the level of a hormone in your spit could reveal if you're on the point of burnout, according to research undertaken by Dr. Sonia Lupien and Robert-Paul Juster of the Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital and the University of Montreal.

In addition to professional and personal suffering, burnout puts distressed workers at further risk of physical and psychological problems if ignored. This is significant, as burnout, clinical depression, or anxiety related to the workplace affects at least 10% of North Americans and Europeans, according to estimates prepared by the International Labor Organization.

"We hypothesized that healthy workers with chronic stress and with mild burnout symptoms would have worse physiological dysregulations and lower cortisol levels – a profile consistent with burnout," Juster explained. Cortisol is a stress hormone involved in our bodies stress response and naturally as part of our body's daily rhythm. Cortisol levels are often high in people suffering from depression, while it tends to be low in cases of burnout. Too much cortisol can be as bad as too little when it comes to both mental and physical health.

Chronic stress and misbalanced cortisol levels can exert a kind of domino effect on connected biological systems. The term "allostatic load" represents the physiological problems or 'wear and tear' that ensue in these different systems related to risks for diabetes, cardiovascular disease, and immune problems. By looking at various factors such as insulin, sugar, cholesterol, blood pressure, and inflammation, an allostatic load index can be constructed and then used to detect problems before they occur. "The strength of the allostatic load model is its flexible inclusion of numerous biological systems that get strained by chronic stress. Complementary use of saliva samples and validated questionnaires allows us to go beyond measuring susceptibilities to, say, metabolic syndromes or heart problems, but also into the realm of mental health," Juster said.

The results of this first pilot study were obtained by testing thirty middle-aged participants. In addition to undergoing routine blood measures that assessed allostatic load, participants were instructed to collect saliva at home and during a laboratory paradigm. They also filled out questionnaires related to their current stress levels as well as symptoms of depression and burnout.

This research is part of a greater effort to develop personalized medicine in this field. Personalized medicine targets the customization of treatment according to the needs of the individual. "In an effort to advance person-centered approaches in prevention and treatment strategies, we have to investigate the biopsychosocial signatures of specific diseases," Lupien said. "For conditions like burnout where we have no consensus on diagnostic criteria and where there is overlap with symptoms of depression, it is essential to use multiple methods of analysis. One potential signature of burnout appears to be fatigued production of the stress hormone cortisol and dysregulations of the physiological systems that interact with this stress hormone."

Critically, people with burnout are often treated with anti-depressant medications that lower cortisol levels. If cortisol is already lower than it should be, this course of treatment could represent a therapeutic mistake. "The use of an allostatic load index gives researchers and clinicians a window to see how chronic stress is straining the person. In the future, we need studies that track people over time to determine whether this profile of low cortisol and physiological dysregulations is indeed burnout's autograph. If so, science will be one step closer to helping distressed workers before they burn out," Juster noted.

The research was published in Psychoneuroendocrinology and received funding from the Canadian Institutes of Health Research. Dr. Sonia Lupien is Scientific Director of Fernand-Seguin Research Centre of Louis–H. Lafontaine Hospital and is an associate professor with the Department of Psychiatry at Université de Montréal. Dr. Lupien is the Founder and Director of the Centre for Studies on Human Stress. She also holds a Senior Investigator Chair on Sex, Gender and Mental Health from the Canadian Institute of Gender and Health (IGH). Juster is affiliated with the Fernand-Seguin Research Centre of Louis-H. Lafontaine Hospital and the Centre for Studies on Human Stress. He's a Ph.D. candidate in the Department of Neurology and Neurosurgery at McGill University.

William Raillant-Clark | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>