Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, simple method identifies preterm infants at risk of eye disease

07.04.2009
A simple way of establishing which preterm infants are at risk of developing the eye disease ROP is to follow their weight gain. A new study from the Sahlgrenska Academy, University of Gothenburg, Sweden, suggests that following weekly weight development might replace the need for considerably more expensive ophthalmological examinations.

Every year around 1000 Swedish infants are born more than two months prematurely. Preterm infants are at increased risk of damage to several important organs, including the brain, lungs, guts and eyes. Around 350 of these infants develop the eye disease retinopathy of prematurity (ROP) which, if left untreated, can threaten their sight.

Ten per cent, or around one hundred, of the preterm infants need the same treatment to prevent blindness.

"In the past 50 years it has been routine for all infants born very prematurely to be examined several times by ophthalmologists to identify children who need treatment for ROP, but this expensive method of screening can now perhaps be replaced by a considerably simpler and cheaper method, so that ophthalmological examination can be avoided in most cases," says Professor Ann Hellström of Sahlgrenska Academy.

The research team has previously identified another important link between preterm birth and vascular disease in the eye, the protein IGF-1, which is strongly linked to the infant's weight gain. Assisted by statisticians at the University of Gothenburg, the researchers have developed an assessment model known as WINROP (Weight IGF-1 Neonatal ROP), which is based on weekly measurements of the infant's weight and analyses of the serum levels of IGF-1. "However, one would prefer not to take any blood samples from the preterm infants, and therefore we wanted to investigate whether our surveillance model worked if we only used the infant's weight. We found that it works extremely well," says Professor Hellström.

In a review of medical records, information on the weekly weights of 350 infants was entered into the model, and the outcome was compared with the ophthalmological examinations performed on them.

"All infants at risk were on average identified a few months before the ophthalmologist had seen signs of ROP requiring treatment. The method could therefore not just save money but also make it possible for infants with eye problems to be identified earlier," says Professor Hellström.

The new WINROP model is now to be evaluated in a large British study and also on data from Brazilian and American infants. The material will be analysed during the summer of 2009.

For further information, contact:
Professor Ann Hellström, telephone +46 (0)31-343 57 74, ann.hellstrom@medfak.gu.se
Chatarina Löfqvist, chatarina.lofqvist@vgregion.se
Journal: Pediatrics
Title of article: Early Weight Gain Predicts Retinopathy in Preterm Infants: New, Simple, Efficient Approach to Screening
Authors: Ann Hellström, Anna-Lena Hård, Eva Engström, Aimon Niklasson, Eva Andersson, Lois Smith, Chatarina Löfqvist
BY: Elin Lindström Claessen
elin.lindstrom@gu.se
+46 (0)31-786 3869, +47 (0)70-829 43 03
The Sahlgrenska Academy
The Sahlgrenska Academy is the faculty of health sciences at the University of Gothenburg. Education and research are conducted within the fields of pharmacy, medicine, odontology and health care sciences.

About 4000 undergraduate students and 1000 postgraduate students are enrolled at Sahlgrenska Academy. The staff is about 1500 persons. 850 of them are researchers and/or teachers.

University of Gothenburg, Sweden, has about 25 000 full-time students and a staff of 5 200. Its eight faculties offer training in the Creative Arts, Social Sciences, Natural Sciences, Humanities, Education, Information Technology, Business, Economics and Law, and Health Sciences.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se/aktuellt/nyheter/Nyheter+Detalj?contentId=876556

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>