Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple device can ensure food gets to the store bacteria free

04.03.2009
A Purdue University researcher has found a way to eliminate bacteria in packaged foods such as spinach and tomatoes, a process that could eliminate worries concerning some food-borne illnesses.

Kevin Keener designed a device consisting of a set of high-voltage coils attached to a small transformer that generates a room-temperature plasma field inside a package, ionizing the gases inside. The process kills harmful bacteria such as E. coli and salmonella, which have caused major public health concerns.

Keener's process is outlined in an article released online early in LWT - Food Science and Technology, a journal for the Swiss Society of Food and Technology and the International Union of Food Science and Technology.

"Conceptually, we can put any kind of packaged food we want in there," said Keener, an associate professor in the Department of Food Science. "So far, it has worked on spinach and tomatoes, but it could work on any type of produce or other food."

By placing two high-voltage, low-watt coils on the outside of a sealed food package, a plasma field is formed. In the plasma field, which is a charged cloud of gas, oxygen has been ionized and turned into ozone. Treatment times range from 30 seconds to about five minutes, Keener said.

Ozone kills bacteria such as E. coli and salmonella. The longer the gas in the package remains ionized, the more bacteria that are killed. Eventually, the ionized gas will revert back to its original composition.

The process uses only 30-40 watts of electricity, less than most incandescent light bulbs. The outside of the container only increases a few degrees in temperature, so its contents are not cooked or otherwise altered.

Other methods of ozone treatment require adding devices to bags before sealing them to create ozone or pumping ozone into a bag and then sealing it. Keener's method creates the ozone in the already sealed package, eliminating any opportunity for contaminants to enter while ozone is created.

"It's kind of like charging a battery. We're charging that sample," Keener said. "We're doing it without electrode intrusion. We're not sticking a probe in the package. We can do this in a sealed package."

Keener said testing has worked with glass containers, flexible plastic-like food-storage bags and rigid plastics, such as strawberry cartons and pill bottles. He said the technology also could work to ensure pharmaceuticals are free from bacteria.

According to the Centers for Disease Control and Prevention, about 40,000 cases of Salmonellosis, an infection caused by salmonella, are reported each year in the United States, causing 400 deaths. The CDC reports that about 70,000 E. coli infections are reported each year, causing dozens of deaths.

Funding for Keener's research came from Purdue Agriculture. A patent on the technology is pending.

Keener said the next step is to develop a commercial prototype of the device that could work on large quantities of food.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Kevin Keener, (765) 494-6648, kkeener@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>