Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silent stroke can cause Parkinson's disease

19.12.2012
Scientists at The University of Manchester have for the first time identified why a patient who appears outwardly healthy may develop Parkinson's disease.

Whilst conditions such as a severe stroke have been linked to the disease, for many sufferers the tremors and other symptoms of Parkinson's disease can appear to come out of the blue. Researchers at the university's Faculty of Life Sciences have now discovered that a small stroke, also known as a silent stroke, can cause Parkinson's disease. Their findings have been published in the journal "Brain Behaviour and Immunity".

Unlike a severe stroke, a silent stroke can show no outward symptoms of having taken place. It happens when a blood vessel in the brain is blocked for only a very short amount of time and often a patient won't know they have suffered from one. However, it now appears one of the lasting effects of a silent stroke can be the death of dopaminergic neurons in the substantia nigra in the brain, which is an important region for movement coordination.

Dr. Emmanuel Pinteaux led the research: "At the moment we don't know why dopaminergic neurons start to die in the brain and therefore why people get Parkinson's disease. There have been suggestions that oxidative stress and aging are responsible. What we wanted to do in our study was to look at what happens in the brain away from the immediate area where a silent stroke has occurred and whether that could lead to damage that might result in Parkinson's disease."

The team induced a mild stroke similar to a silent stroke in the striatum area of the brain in mice. They found there was inflammation and brain damage in the striatum following the stroke, which they had expected. What the researchers didn't expect was the impact on another area of the brain, the substantia nigra. When they analysed the substantia nigra they recorded a rapid loss of Substance P (a key chemical involved in its functions) as well as inflammation.

The team then analysed changes in the brain six days after the mild stroke and found neurodegeneration in the substantia nigra. Dopaminergic neurones had been killed.

Talking about the findings Dr Pinteaux said: "It is well known that inflammation following a stroke can be very damaging to the brain. But what we didn't fully appreciate was the impact on areas of the brain away from the location of the stroke. Our work identifying that a silent stroke can lead to Parkinson's disease shows it is more important than ever to ensure stroke patients have swift access to anti-inflammatory medication. These drugs could potentially either delay or stop the on-set of Parkinson's disease."

Dr Pinteaux continued: "What our findings also point to is the importance of maintaining a healthy lifestyle. There are already guidelines about exercise and healthy eating to help reduce the risk of having a stroke and our research suggests that a healthy lifestyle can be applied to Parkinson's disease as well."

Following the publication of these findings, Dr Pinteaux hopes to set up a clinical investigation on people who have had a silent stroke to assess dopaminergic neuron degeneration. In the meantime he will be working closely will colleagues at The University of Manchester to better understand the mechanisms of inflammation in the substantia nigra.

Morwenna Grills | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: dopaminergic neurons healthy life healthy lifestyle mild stroke

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>