Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silent stroke can cause Parkinson's disease

Scientists at The University of Manchester have for the first time identified why a patient who appears outwardly healthy may develop Parkinson's disease.

Whilst conditions such as a severe stroke have been linked to the disease, for many sufferers the tremors and other symptoms of Parkinson's disease can appear to come out of the blue. Researchers at the university's Faculty of Life Sciences have now discovered that a small stroke, also known as a silent stroke, can cause Parkinson's disease. Their findings have been published in the journal "Brain Behaviour and Immunity".

Unlike a severe stroke, a silent stroke can show no outward symptoms of having taken place. It happens when a blood vessel in the brain is blocked for only a very short amount of time and often a patient won't know they have suffered from one. However, it now appears one of the lasting effects of a silent stroke can be the death of dopaminergic neurons in the substantia nigra in the brain, which is an important region for movement coordination.

Dr. Emmanuel Pinteaux led the research: "At the moment we don't know why dopaminergic neurons start to die in the brain and therefore why people get Parkinson's disease. There have been suggestions that oxidative stress and aging are responsible. What we wanted to do in our study was to look at what happens in the brain away from the immediate area where a silent stroke has occurred and whether that could lead to damage that might result in Parkinson's disease."

The team induced a mild stroke similar to a silent stroke in the striatum area of the brain in mice. They found there was inflammation and brain damage in the striatum following the stroke, which they had expected. What the researchers didn't expect was the impact on another area of the brain, the substantia nigra. When they analysed the substantia nigra they recorded a rapid loss of Substance P (a key chemical involved in its functions) as well as inflammation.

The team then analysed changes in the brain six days after the mild stroke and found neurodegeneration in the substantia nigra. Dopaminergic neurones had been killed.

Talking about the findings Dr Pinteaux said: "It is well known that inflammation following a stroke can be very damaging to the brain. But what we didn't fully appreciate was the impact on areas of the brain away from the location of the stroke. Our work identifying that a silent stroke can lead to Parkinson's disease shows it is more important than ever to ensure stroke patients have swift access to anti-inflammatory medication. These drugs could potentially either delay or stop the on-set of Parkinson's disease."

Dr Pinteaux continued: "What our findings also point to is the importance of maintaining a healthy lifestyle. There are already guidelines about exercise and healthy eating to help reduce the risk of having a stroke and our research suggests that a healthy lifestyle can be applied to Parkinson's disease as well."

Following the publication of these findings, Dr Pinteaux hopes to set up a clinical investigation on people who have had a silent stroke to assess dopaminergic neuron degeneration. In the meantime he will be working closely will colleagues at The University of Manchester to better understand the mechanisms of inflammation in the substantia nigra.

Morwenna Grills | EurekAlert!
Further information:

Further reports about: dopaminergic neurons healthy life healthy lifestyle mild stroke

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>