Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different signal paths for spontaneous and deliberate activation of memories

11.03.2010
Entirely different signal paths and parts of the brain are involved when you try to remember something and when you just happen to remember something, prompted by a smell, a picture, or a word, for instance. This is shown by Kristiina Kompus in her dissertation at Umeå University in Sweden.

Imagine you are asked to remember what you were doing exactly one week ago. You would probably have to make quite a mental effort to sift through your memories. On another occasion, a smell, a picture, or a word might suddenly and unexpectedly trigger a vivid memory of something that happened to you.

Science still does not fully understand why our brain sometimes automatically supplies us with a memory that we have done nothing to deliberately call to mind, whereas why, on other occasions, we cannot remember things even though we make efforts to recall them.

The studies in Kristiina Kompus's dissertation show that these two different ways of remembering things are initiated by entirely different signal paths in the brain. Efforts to retrieve a specific memory are dealt with by the upper part of the frontal lobe. This area of the brain is activated not only in connection with memory-related efforts but also in all types of mental efforts and intentions, according to the dissertation. This part of the brain is not involved in the beginning of the process of unintentionally remembering something as a response to external stimuli. Instead, such memories are activated by specific signals from other parts of the brain, namely those that deal with perceived stimuli like smells, pictures, and words. Sometimes such memories are thought to be more vivid and emotional; otherwise they would not be activated in this way. But Kristiina Kompus's dissertation shows that this is not the case - memories do not need to be emotionally charged to be revived spontaneously, unintentionally. Nor do memories that are revived spontaneously activate the brain more than other ies.

The studies also reveal that our long-term memory is more flexible that was previously believed. There is not just one single neurological signaling path for reliving old memories but rather several paths that are anatomically separate. This discovery is important, since it helps us understand how we can help people who have a hard time remembering things, regardless of whether this is related to aging or to some disorder in the brain. It may also help people who are plagued by unpleasant memories that constantly haunt them. This can happen following traumatic experiences, but also in depression.

The dissertation uses a combination of two imaging methods for the brain: functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The methods yield different information about the function of the brain. By combining them, Kristiina Kompus has been able both to determine what part of the brain is activated and how the activation proceeds over extremely brief time intervals, on the order of milliseconds.

Kristiina Kompus is an English speaker. She can be reached at: Phone: +46 (0)90-786 51 86, ext. 12. Mobile: +46 (0)70-758 79 24 E-mail: kristiina.kompus@diagrad.umu.se

Pressofficer: Betil Born, +46-(0)703-88 60 58,bertil.born@adm.umu.se

Bertil Born | idw
Further information:
http://www.umu.se
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-31873

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>