Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different signal paths for spontaneous and deliberate activation of memories

11.03.2010
Entirely different signal paths and parts of the brain are involved when you try to remember something and when you just happen to remember something, prompted by a smell, a picture, or a word, for instance. This is shown by Kristiina Kompus in her dissertation at Umeå University in Sweden.

Imagine you are asked to remember what you were doing exactly one week ago. You would probably have to make quite a mental effort to sift through your memories. On another occasion, a smell, a picture, or a word might suddenly and unexpectedly trigger a vivid memory of something that happened to you.

Science still does not fully understand why our brain sometimes automatically supplies us with a memory that we have done nothing to deliberately call to mind, whereas why, on other occasions, we cannot remember things even though we make efforts to recall them.

The studies in Kristiina Kompus's dissertation show that these two different ways of remembering things are initiated by entirely different signal paths in the brain. Efforts to retrieve a specific memory are dealt with by the upper part of the frontal lobe. This area of the brain is activated not only in connection with memory-related efforts but also in all types of mental efforts and intentions, according to the dissertation. This part of the brain is not involved in the beginning of the process of unintentionally remembering something as a response to external stimuli. Instead, such memories are activated by specific signals from other parts of the brain, namely those that deal with perceived stimuli like smells, pictures, and words. Sometimes such memories are thought to be more vivid and emotional; otherwise they would not be activated in this way. But Kristiina Kompus's dissertation shows that this is not the case - memories do not need to be emotionally charged to be revived spontaneously, unintentionally. Nor do memories that are revived spontaneously activate the brain more than other ies.

The studies also reveal that our long-term memory is more flexible that was previously believed. There is not just one single neurological signaling path for reliving old memories but rather several paths that are anatomically separate. This discovery is important, since it helps us understand how we can help people who have a hard time remembering things, regardless of whether this is related to aging or to some disorder in the brain. It may also help people who are plagued by unpleasant memories that constantly haunt them. This can happen following traumatic experiences, but also in depression.

The dissertation uses a combination of two imaging methods for the brain: functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The methods yield different information about the function of the brain. By combining them, Kristiina Kompus has been able both to determine what part of the brain is activated and how the activation proceeds over extremely brief time intervals, on the order of milliseconds.

Kristiina Kompus is an English speaker. She can be reached at: Phone: +46 (0)90-786 51 86, ext. 12. Mobile: +46 (0)70-758 79 24 E-mail: kristiina.kompus@diagrad.umu.se

Pressofficer: Betil Born, +46-(0)703-88 60 58,bertil.born@adm.umu.se

Bertil Born | idw
Further information:
http://www.umu.se
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-31873

More articles from Health and Medicine:

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>