Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortcut through eyelid gives surgeons less-invasive approach to fix brain fluid leaks

09.06.2010
Surgeons at Johns Hopkins have safely and effectively operated inside the brains of a dozen patients by making a small entry incision through the natural creases of an eyelid to reach the skull and deep brain.

They say access to the skull and brain through either lid, formally known as a transpalpebral orbitofrontal craniotomy, sharply contrasts with the more laborious, physically damaging and invasive, traditional means of entry used in brain surgery that requires opening the top half of the skull.

"Going through the eyelid offers a simpler, more direct route to the middle and front regions of the brain than traditional skull-based surgery," says lead study investigator and facial plastic and reconstructive surgeon Kofi Boahene, M.D. "This minimally invasive approach also avoids the major head trauma typically associated with brain surgery."

The new approach eliminates the need for shaving the patient's hair, pulling up the scalp, opening the top half of the skull, and moving aside whole outer sections of the brain in order to operate on the organ's delicate neurological tissue.

Writing in a pair of studies, one published in the June issue of the Journal of Otolaryngology – Head and Neck Surgery and another set to appear in the July issue of Skull Base, the Johns Hopkins team describes what are believed to be the first published cases studies of the procedure, documenting how it was successfully used to repair brain fluid leaks, conduct tissue biopsy and remove tumors. All are common surgeries, but were performed in patients whose complex illnesses made the traditional approach too risky or untenable.

The minicraniotomy through the eyelid requires surgeons to remove only a small, half-inch to one-inch-square section of skull bone right above the eyebrow, which is later replaced, to gain access to the body's nervous system control center.

Once access to the brain is secured, a microscope- and computer-guided endoscope, fitted with a camera, are used to precisely thread other surgical instruments into the soft tissue to perform the operation, using high-tech maps created by advanced CT and MRI scans of the brain.

Boahene says the new approach takes less time to perform, taking on average less than two hours in the operating room as opposed to the traditional four to eight hours; poses less risk of possible infection due to the less-invasive amount of work in opening the skull; and requires less time for recovery in hospital, usually an overnight stay instead of four days or longer in the hospital.

The only noticeable hints of any surgery having been performed, he says, are the dissolvable sutures across the eyelid. By contrast, many brain surgeries require lengthy cuts of the skin (with its subsequent scarring) before the scalp can be pulled up.

"This new technique does not even leave a noticeable scar, as we are deliberately cutting across the natural creases in the eyelid," says Boahene, an assistant professor at the Johns Hopkins University School of Medicine, who has performed 15 such procedures at Johns Hopkins since 2007. Before the procedure, surgeons check by drawing along the eyelid folds with a black marker, making sure the line is not visible when the patient's eyes are open.

The minicraniotomy, Boahene says, does still require an anesthetic, which carries its own risks of complications, and ice packs around the eye to prevent swelling.

Among the scenarios highlighted in the new reports for which eyelid entry proved useful was to mend a common postsurgical complication, a cerebrospinal spinal fluid leak into the sinus cavity that had resulted from a previous, more invasive skull surgery. Surgeons were fearful that further swelling from additional skull trauma would hamper the patient's recovery and instead opted for the less-invasive form of surgery to stem the flow.

In another instance included in the reports, surgeons were able to remove a potentially cancerous tumor in a baby whose skull and head size were deemed too small to endure the physical trauma associated with major brain surgery.

"The transpalpebral approach is a very viable and practical option for thousands of surgeries done each year in the United States that involve problems deeply seated behind the eyes or at the front of the brain," says senior study investigator and neurosurgeon Alfredo Quinones-Hinojosa, M.D.

The minicraniotomy can also be used to correct deformities or skull bones broken by trauma and car accidents, says Quinones-Hinojosa, an associate professor at Johns Hopkins.

The team's next steps, he adds, are to evaluate and expand the list of procedures for which a transpalpebral orbitofrontal craniotomy is best suited. Under consideration by the group are brain aneurysm repair and removal of larger brain tumors that cannot be more easily reached by traditional skull surgery or by going through the nose and sinus cavities.

Funding support for this report was provided The Johns Hopkins Hospital.

Besides Boahene and Quinones-Hinojosa, other Hopkins researchers who participated in this study were Michael Lim, M.D., and Eugene Chu, M.D.

For additional information, please go to: http://www.hopkinsmedicine.org/otolaryngology/

http://www.hopkinsmedicine.org/minimally_invasive_brain_skull_base_
surgery_center/about_us/our_team/otolaryngology_head_neck_surgery/kofi
_boahene.html
http://www.youtube.com/watch?v=xOthIVAWISc
http://www.hopkinsmedicine.org/press_releases/2007/05_14_07.html
http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/team_member
_profile/36A35BDE9B71CB08318C8F419FD7ACB4/Alfredo_Quinones-Hinojosa

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>