Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortcut through eyelid gives surgeons less-invasive approach to fix brain fluid leaks

09.06.2010
Surgeons at Johns Hopkins have safely and effectively operated inside the brains of a dozen patients by making a small entry incision through the natural creases of an eyelid to reach the skull and deep brain.

They say access to the skull and brain through either lid, formally known as a transpalpebral orbitofrontal craniotomy, sharply contrasts with the more laborious, physically damaging and invasive, traditional means of entry used in brain surgery that requires opening the top half of the skull.

"Going through the eyelid offers a simpler, more direct route to the middle and front regions of the brain than traditional skull-based surgery," says lead study investigator and facial plastic and reconstructive surgeon Kofi Boahene, M.D. "This minimally invasive approach also avoids the major head trauma typically associated with brain surgery."

The new approach eliminates the need for shaving the patient's hair, pulling up the scalp, opening the top half of the skull, and moving aside whole outer sections of the brain in order to operate on the organ's delicate neurological tissue.

Writing in a pair of studies, one published in the June issue of the Journal of Otolaryngology – Head and Neck Surgery and another set to appear in the July issue of Skull Base, the Johns Hopkins team describes what are believed to be the first published cases studies of the procedure, documenting how it was successfully used to repair brain fluid leaks, conduct tissue biopsy and remove tumors. All are common surgeries, but were performed in patients whose complex illnesses made the traditional approach too risky or untenable.

The minicraniotomy through the eyelid requires surgeons to remove only a small, half-inch to one-inch-square section of skull bone right above the eyebrow, which is later replaced, to gain access to the body's nervous system control center.

Once access to the brain is secured, a microscope- and computer-guided endoscope, fitted with a camera, are used to precisely thread other surgical instruments into the soft tissue to perform the operation, using high-tech maps created by advanced CT and MRI scans of the brain.

Boahene says the new approach takes less time to perform, taking on average less than two hours in the operating room as opposed to the traditional four to eight hours; poses less risk of possible infection due to the less-invasive amount of work in opening the skull; and requires less time for recovery in hospital, usually an overnight stay instead of four days or longer in the hospital.

The only noticeable hints of any surgery having been performed, he says, are the dissolvable sutures across the eyelid. By contrast, many brain surgeries require lengthy cuts of the skin (with its subsequent scarring) before the scalp can be pulled up.

"This new technique does not even leave a noticeable scar, as we are deliberately cutting across the natural creases in the eyelid," says Boahene, an assistant professor at the Johns Hopkins University School of Medicine, who has performed 15 such procedures at Johns Hopkins since 2007. Before the procedure, surgeons check by drawing along the eyelid folds with a black marker, making sure the line is not visible when the patient's eyes are open.

The minicraniotomy, Boahene says, does still require an anesthetic, which carries its own risks of complications, and ice packs around the eye to prevent swelling.

Among the scenarios highlighted in the new reports for which eyelid entry proved useful was to mend a common postsurgical complication, a cerebrospinal spinal fluid leak into the sinus cavity that had resulted from a previous, more invasive skull surgery. Surgeons were fearful that further swelling from additional skull trauma would hamper the patient's recovery and instead opted for the less-invasive form of surgery to stem the flow.

In another instance included in the reports, surgeons were able to remove a potentially cancerous tumor in a baby whose skull and head size were deemed too small to endure the physical trauma associated with major brain surgery.

"The transpalpebral approach is a very viable and practical option for thousands of surgeries done each year in the United States that involve problems deeply seated behind the eyes or at the front of the brain," says senior study investigator and neurosurgeon Alfredo Quinones-Hinojosa, M.D.

The minicraniotomy can also be used to correct deformities or skull bones broken by trauma and car accidents, says Quinones-Hinojosa, an associate professor at Johns Hopkins.

The team's next steps, he adds, are to evaluate and expand the list of procedures for which a transpalpebral orbitofrontal craniotomy is best suited. Under consideration by the group are brain aneurysm repair and removal of larger brain tumors that cannot be more easily reached by traditional skull surgery or by going through the nose and sinus cavities.

Funding support for this report was provided The Johns Hopkins Hospital.

Besides Boahene and Quinones-Hinojosa, other Hopkins researchers who participated in this study were Michael Lim, M.D., and Eugene Chu, M.D.

For additional information, please go to: http://www.hopkinsmedicine.org/otolaryngology/

http://www.hopkinsmedicine.org/minimally_invasive_brain_skull_base_
surgery_center/about_us/our_team/otolaryngology_head_neck_surgery/kofi
_boahene.html
http://www.youtube.com/watch?v=xOthIVAWISc
http://www.hopkinsmedicine.org/press_releases/2007/05_14_07.html
http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/team_member
_profile/36A35BDE9B71CB08318C8F419FD7ACB4/Alfredo_Quinones-Hinojosa

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>