Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Short Antibiotic Courses Safer for Breathing-Tube Infections in Children

Study shows need for judicious use of drugs to curb antibiotic resistance

Short courses of antibiotics appear just as effective as longer ones — and a great deal safer — in treating respiratory infections that might cause pneumonia in children on temporary breathing devices, according to a Johns Hopkins Children’s Center study published online May 3 in Clinical Infectious Diseases.

In the study’s analysis of 150 children treated with antibiotics for respiratory infections while on a ventilator, longer antibiotic courses did not only fail to confer extra protection against full-blown pneumonia when compared with shorter therapy, but also considerably increased a child’s risk for developing drug-resistant infections within a month.

To rein in the spread of bacterial drug resistance, the researchers advise clinicians to carefully evaluate the need for antibiotics in the first place and to use antibiotics for the shortest time needed to achieve clinical effect.

“Our study underscores the old physician maxim to first do no harm,” said lead investigator Pranita Tamma, M. D., an infectious disease specialist at Hopkins Children’s. “Longer treatment is not always more effective, and it could be downright dangerous.”

Children on ventilators often develop respiratory infections, or tracheitis, because the breathing tubes allow bacteria an easy entry into the respiratory tract. These children need antibiotics promptly to prevent the infection from spreading into the lungs, but the optimal length of treatment has been unclear.

“We hope that our findings will help clear up some of the confusion and discourage physicians from preemptively opting for longer treatments,” Tamma said.

The Johns Hopkins investigators analyzed three years worth of medical records involving more than 1,600 children, age 18 and younger, who spent at least two days on a breathing tube. Of them, 150 got antibiotics for ventilator-related upper respiratory infections, however only 118 of them met clinical criteria for such infections, and 32 were treated merely on suspicion of infection.

Of the 82 children with actual infections who were treated with antibiotics for more than a week, 23 percent developed pneumonia, compared to 20 percent of the 36 children who got antibiotics for seven days or fewer. However, children who received the lengthy antibiotic course were five times more likely, on average, to develop drug-resistant infections following the treatment. Children who got multiple antibiotics were three times as likely to do so.

Although the length of antibiotic use made no statistical difference in pneumonia risk, the length of intubation did. Children whose tubes were left in after diagnosis of infection and start of therapy were four times more likely to progress to pneumonia than children taken off the ventilator promptly after diagnosis and start of treatment, the researchers found. The finding emphasizes the need for careful daily reassessment of each child’s need to stay on a ventilator, they added.

Past research has shown that more than one-third of antibiotic prescriptions for upper respiratory infections in the intensive care unit may be unwarranted, the investigators noted.

“Beyond fueling drug resistance, antibiotics can cause serious side effects and add to healthcare costs. We, as physicians, should ask ourselves two critical questions any time we prescribe them: ‘Does this patient really need antibiotics?’ If so, ‘what is the shortest course of treatment that will achieve clinical benefit?’” said senior investigator Sara Cosgrove, M.D., an infectious disease specialist at Hopkins.

Other investigators in the study included Alison Turnbull, Ph.D., Aaron Milstone, M.D., M.H.S., Christoph Lehmann, M.D., and Emily Sydnor, M.D., all of Hopkins.

The research was funded by the National Institutes of Health.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's will celebrate its 100th anniversary and move to a new home in 2012. For more information, please visit

Ekaterina Pesheva | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>