Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severity of H1N1 flu in US during current flu season may be less than feared

08.12.2009
Burden of disease may fall on young children and non-elderly adults

A new study from researchers at the UK Medical Research Council and the Harvard School of Public Health (HSPH) projects that the severity of the H1N1 flu during the autumn-winter flu season in the U.S. will likely be less than previously feared.

The estimates of hospitalizations and life-threatening events in the study are the most accurate to date of the H1N1 pandemic's impact in the U.S. The study appears online on December 7, 2009 in the journal PLoS Medicine.

"As more detailed data have become available, we have been able to improve our estimates of how severe this disease is. Early on, it was difficult to measure the flu's impact and it was crucial to plan for the full range of possible outcomes. Fortunately, the virus now appears to be near the milder end," said Marc Lipsitch, professor of epidemiology at HSPH and the study's senior author. Lipsitch heads the Center for Communicable Disease Dynamics at HSPH, which focuses on mathematical modeling and analysis of data on pandemic influenza, drug resistant infections, seasonal infectious diseases, and intervention allocation.

The Center is funded through the National Institutes of Health's Models of Infectious Disease Agent Study (MIDAS), which is aiming to increase capacity to model disease spread, evaluate different intervention strategies, and help inform public health officials and policymakers.

While the news is better than was thought at the start of the pandemic, Lipsitch emphasizes that it remains important to continue to vaccinate against pandemic H1N1 and to remain vigilant about disease in groups at risk of complications. "This is a serious disease," said Lipsitch. "The U.S. Centers for Disease Control (CDC) and others have shown that certain high-risk groups, including pregnant women, people with asthma, and people with compromised immune systems, should be vaccinated and should seek prompt treatment if they suspect they are sick with H1N1. Even for people outside these high-risk groups, vaccination is an important way to reduce the risk of what can be a serious illness."

Estimates of the H1N1 flu's severity are important because they help public health officials plan for the types of interventions that are needed to treat symptoms, including life-threatening respiratory situations, and help officials project the possible burden on the health care system.

"Providing unbiased estimates to gauge the severity of the flu pandemic is crucial in order for local health services to be able to plan their resources properly and deliver the best level of care possible. Our study was careful to account for uncertainty in the evidence and analyse the different ways severity of the illness is being measured," said first author Anne Presanis of the Medical Research Council Biostatistics Unit in Cambridge, UK.

Up until this point, the severity of H1N1 flu among the U.S. population had been hard to measure, partly due to the difficulties of counting the large numbers of cases that overwhelmed health authorities and of testing the large numbers of people that had symptoms. The World Health Organization counts 209,000 laboratory-confirmed cases and more than 3,205 deaths worldwide as of September 11, 2009, but health authorities worldwide believe that these are substantial underestimates.

The researchers, led by Presanis and Lipsitch, measured the severity of the pandemic by analyzing what fraction of people in the study population that were sick with H1N1 flu were (1) hospitalized, (2) in an intensive-care unit (ICU) or on a ventilator or (3) had died. They analyzed data from the CDC and from New York and Milwaukee, two cities where health officials collected particularly high-quality surveillance data during the wave of infections from April to July 2009. The researchers then combined all the evidence using a statistical approach called Bayesian evidence synthesis to estimate the probability of the three outcomes above for individuals who fell ill with H1N1 in the overall U.S. population and by age group.

The researchers used two different approaches to estimate these risks. One approach led to an estimate that approximately 1.44% of patients with symptoms of H1N1 flu during the April-July time period were hospitalized, 0.239% required intensive care or mechanical ventilation and 0.048% died. The other estimate found probabilities 7 to 9 times lower, due to the use of different data to estimate how many individuals were sick. Based on these findings and assuming that the virus doesn't change its characteristics, the researchers estimate that the severity of the autumn-winter pandemic wave of H1N1 flu could have a death toll in a range from considerably below the estimated 36,000 associated with an average flu season in the U.S. to slightly higher. Also, unlike seasonal flu, which kills mainly elderly adults, the H1N1 flu could have the greatest impact in children aged 0-4 and especially adults 18-64, a shift toward nonelderly persons that has been seen in prior flu pandemics.

"The good news is that, along with previous work by the CDC and others, our work shows that the severity of the H1N1 flu may be less than initially feared," said Lipsitch. However, he adds that between 1 in 70 and 1 in 600 people who are sick with the illness will be hospitalized, and a fraction of those will die.

A preliminary version of this article was posted on PLoS Currents (September 25th 2009), a new forum for rapid publication of results designed to aid timely dissemination of important information during the pandemic.

Support for the study was provided by the UK Medical Research Council, the UK Health Protection Agency, the U.S. National Institutes of Health and Department of Homeland Security.

"The Severity of Pandemic H1N1 Influenza in the United States from April to July 2009: A Bayesian Analysis," Anne M. Presanis, Daniela De Angelis, The New York City Swine Flu Investigation Team, Angela Hagy, Carrie Reed, Steven Riley, Ben S. Cooper, Lyn Finelli, Paul Biedrzycki, Marc Lipsitch, PLoS Medicine, online Dec. 7, 2009

Harvard School of Public Health is dedicated to advancing the public's health through learning, discovery, and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children's health to quality of care measurement; from health care management to international health and human rights.

Todd Datz | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>