Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Series of studies first to examine acupuncture's mechanisms of action

14.03.2013
Understanding the molecular underpinnings of an ancient Chinese therapy's success could increase its acceptance by mainstream medicine
While acupuncture is used widely to treat chronic stress, the mechanism of action leading to reported health benefits are not understood. In a series of studies at Georgetown University Medical Center (GUMC), researchers are demonstrating how acupuncture can significantly reduce the stress hormone response in an animal model of chronic stress.

The latest study was published today in the April issue of Journal of Endocrinology.

"Many practitioners of acupuncture have observed that this ancient practice can reduce stress in their patients, but there is a lack of biological proof of how or why this happens," says the study's lead author, Ladan Eshkevari, PhD, an associate professor of nursing at Georgetown University School of Nursing & Health Studies, a part of GUMC. "We're starting to understand what's going on at the molecular level that helps explain acupuncture's benefit."

Eshkevari, a physiologist, nurse anesthetist and certified acupuncturist, designed a series of studies in rats to test the effect of electronic acupuncture on levels of proteins and hormones secreted by biologic pathways involved in stress response.

Eshkevari used rats because these animals are often used to research the biological determinants of stress. They mount a stress response when exposed to winter-like temperatures for an hour a day.

"I used electroacupuncture because I could make sure that each animal was getting the same treatment dose," she explains.

The spot used for the acupuncture needle is called "Zusanli," which is reported to help relieve a variety of conditions including stress. As with rats, that acupuncture point for humans is on the leg below the knee.

The study utilized four groups of rats for a 10-day experiment: a control group that was not stressed and received no acupuncture; a group that was stressed for an hour a day and did not receive acupuncture; a group that was stressed and received "sham" acupuncture near the tail; and the experimental group that were stressed and received acupuncture to the Zusanli spot on the leg.

The researchers then measured blood hormone levels secreted by the hypothalamus pituitary adrenal (HPA) axis, which includes the hypothalamus, the pituitary gland and the adrenal gland. The interactions among these organs control reactions to stress and regulate digestion, the immune system, mood and emotions, sexuality and energy storage and expenditure.

They also measured levels of NPY, a peptide secreted by the sympathetic nervous system in rodents and humans. This system is involved in the "flight or fight" response to acute stress, resulting in constriction of blood flow to all parts of the body except the heart, lungs and brain (the organs most needed to react to danger). Chronic stress, however, can cause elevated blood pressure and cardiac disease.

"We found that electronic acupuncture blocks the chronic, stress-induced elevations of the HPA axis hormones and the sympathetic NPY pathway," Eshkevari says. She adds that the rats receiving the sham electronic acupuncture had elevation of the hormones similar to that of the stress-only animals.

Eshkevari says this research complements her earlier reported work that focused only on NPY. In that study, Eshkevari and her team found that NPY levels were reduced in the experimental group almost to the level of the control group, while the rats that were stressed and not treated with Zusanli acupuncture had high levels of NPY (Experimental Biology and Medicine Dec. 2011).

"Our growing body of evidence points to acupuncture's protective effect against the stress response," she continues. Eshkevari says additional research is needed to examine if acupuncture would be effective in reducing hormone levels after the animals are exposed to the stress of cold temperatures, and whether a similar observation can be made in humans.
The study was funded by the American Association of Nurse Anesthetists doctoral fellowship award to Eshkevari.

Co-authors include Georgetown researchers Susan Mulroney, PhD, and Eva Permaul. The authors disclose no conflicts of interest.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>