Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Septic shock: Nitric oxide beneficial after all

16.12.2009
Scientists at VIB and Ghent University in Flanders, Belgium have found an unexpected ally for the treatment of septic shock, the major cause of death in intensive care units.

By inducing the release of nitric oxide (NO) gas in mice with septic shock, researchers Anje Cauwels and Peter Brouckaert discovered that the animal's organs showed much less damage, while their chances of survival increased significantly. That's contrary to all expectations, since it is generally assumed that nitric oxide is responsible for the potentially lethal drop in blood pressure in septic shock.

Septic shock, or sepsis, is a medical condition in which acute inflammation, low blood pressure, and blood clotting cause a dangerous decrease in the delivery of blood to the organs. Because of the lack of oxygen, the patient's organs start to fail, one after the other. Currently, only supportive treatment is available.

It is generally assumed that nitric oxide (NO) gas is responsible for the hypotension and cardiovascular collapse in septic shock. Therefore, a lot of medical research is focused on combating NO, which is also a messenger molecule in the body. Attempts to inhibit its production paradoxically led to a worsening of the organ damage and in an increased lethality, both in animal models and in a clinical trial in sepsis patients. This led to the assumption that NO also has positive effects in sepsis, but up to now NO remained a prime suspect for the pathogenesis of the cardiovascular shock.

The team in Ghent is turning this paradigm upside-down in an article that will appear in The Journal of Experimental Medicine on Monday 21 December 2009. During their research, Cauwels and Brouckaert administered nitrite − a substance that releases NO − to mice with septic shock. The nitrite treatment, in sharp contrast with the worsening effect of inhibiting NO-synthesis, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in mice. It is not yet known what mechanisms are at work behind this observation. That will be the subject of further research.

For now, not only is this discovery revolutionizing the way in which scientists view nitric oxide's role in septic shock − it also opens possibilities for treatment. Instead of trying to prevent the effects of NO, they should rather be imitated or reinforced to provide a solution for saving organs or particular parts of the body where there is a lack of oxygen due to septic shock.

Joris Gansemans | EurekAlert!
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>