Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Septic shock: Nitric oxide beneficial after all

16.12.2009
Scientists at VIB and Ghent University in Flanders, Belgium have found an unexpected ally for the treatment of septic shock, the major cause of death in intensive care units.

By inducing the release of nitric oxide (NO) gas in mice with septic shock, researchers Anje Cauwels and Peter Brouckaert discovered that the animal's organs showed much less damage, while their chances of survival increased significantly. That's contrary to all expectations, since it is generally assumed that nitric oxide is responsible for the potentially lethal drop in blood pressure in septic shock.

Septic shock, or sepsis, is a medical condition in which acute inflammation, low blood pressure, and blood clotting cause a dangerous decrease in the delivery of blood to the organs. Because of the lack of oxygen, the patient's organs start to fail, one after the other. Currently, only supportive treatment is available.

It is generally assumed that nitric oxide (NO) gas is responsible for the hypotension and cardiovascular collapse in septic shock. Therefore, a lot of medical research is focused on combating NO, which is also a messenger molecule in the body. Attempts to inhibit its production paradoxically led to a worsening of the organ damage and in an increased lethality, both in animal models and in a clinical trial in sepsis patients. This led to the assumption that NO also has positive effects in sepsis, but up to now NO remained a prime suspect for the pathogenesis of the cardiovascular shock.

The team in Ghent is turning this paradigm upside-down in an article that will appear in The Journal of Experimental Medicine on Monday 21 December 2009. During their research, Cauwels and Brouckaert administered nitrite − a substance that releases NO − to mice with septic shock. The nitrite treatment, in sharp contrast with the worsening effect of inhibiting NO-synthesis, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in mice. It is not yet known what mechanisms are at work behind this observation. That will be the subject of further research.

For now, not only is this discovery revolutionizing the way in which scientists view nitric oxide's role in septic shock − it also opens possibilities for treatment. Instead of trying to prevent the effects of NO, they should rather be imitated or reinforced to provide a solution for saving organs or particular parts of the body where there is a lack of oxygen due to septic shock.

Joris Gansemans | EurekAlert!
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>