Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sepsis discovery goes straight to the heart to save lives

12.04.2011
New research in the FASEB Journal suggests that intervening with neutralizing antibodies to C5a or its receptors could prevent development of cardiomyopathy in patients with sepsis

New research published online in The FASEB Journal (http://www.fasebj.org) details research in rats and mice that offers hope for stopping the devastating, and often fatal, effects of sepsis in humans. In the study, University of Michigan researchers show how neutralizing the effects of a key protein fragment, called C5a, used by the immune system to attract white blood cells may ultimately prevent heart failure.

"During sepsis, heart failure is a common feature of the later stages of the syndrome," said Peter A. Ward, M.D., a senior scientist involved in the work from the Department of Pathology at the University of Michigan Health Systems in Ann Arbor, MI. "The current studies in experimental sepsis suggest that cardiomyocytes interact with the powerful complement-derived C5a anaphylatoxin, resulting in release of cardiosuppressive cytokines that may be linked with defective cardiomyocyte function developing during sepsis."

To make their discovery, Ward and colleagues obtained specialized heart muscle cells, called "cardiomyocytes" (CMs), from normal rats and incubated them in the laboratory with C5a. They found that the cardiomyocyes released specialized immune cells, called cytokines (IL-6 and TNF alpha), in a time-dependent and dose-dependent manner. Sepsis was also induced in mice, and CMs isolated from these mice and examined in vitro. The scientists found that these cells spontaneously released a variety of cytokines, several of which appeared to have the potential to harm the heart. When other mice with beginning stages of sepsis were injected with an antibody to neutralize C5a, the activity of the heart-harming cytokines was reduced. Furthermore, when mice bred to lack receptors for C5a were subjected to sepsis, little or no spontaneous release of cytokines from heart cells occurred.

"Under the best circumstances, sepsis is unpredictable and difficult to treat," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journa1, "It's perhaps the most serious problem in emergency medicine and when sepsis affects the heart it moves from serious to grave. Now that we know that C5a is at least partly responsible, antibodies to C5a promise to get to the heart of the problem."

According to the National Institute of General Medical Sciences, NIH, Sepsis is a major challenge in the intensive care unit, where it is one of the leading causes of death. It is caused when immune chemicals released into the blood to combat infection trigger widespread inflammation, resulting in impaired blood flow, which damages the body's organs by depriving them of nutrients and oxygen. In the worst cases, the heart weakens and multiple organs—lungs, kidneys, liver—may quickly fail and the patient can die. Each year, severe sepsis strikes about 750,000 Americans, and as many as half die, which is more than the number of U.S. deaths from prostate cancer, breast cancer and AIDS combined.

Receive monthly highlights from The FASEB Journal by signing up at http://www.faseb.org/fjupdate.aspx or you can "like" the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Gelareh Atefi, Firas S. Zetoune, Todd J. Herron, José Jalife, Markus Bosmann, Rami Al-Aref, J. Vidya Sarma, and Peter A. Ward. Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. doi:10.1096/fj.11-183236 ; http://www.fasebj.org/content/early/2011/04/08/fj.11-183236.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>