Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sepsis discovery goes straight to the heart to save lives

12.04.2011
New research in the FASEB Journal suggests that intervening with neutralizing antibodies to C5a or its receptors could prevent development of cardiomyopathy in patients with sepsis

New research published online in The FASEB Journal (http://www.fasebj.org) details research in rats and mice that offers hope for stopping the devastating, and often fatal, effects of sepsis in humans. In the study, University of Michigan researchers show how neutralizing the effects of a key protein fragment, called C5a, used by the immune system to attract white blood cells may ultimately prevent heart failure.

"During sepsis, heart failure is a common feature of the later stages of the syndrome," said Peter A. Ward, M.D., a senior scientist involved in the work from the Department of Pathology at the University of Michigan Health Systems in Ann Arbor, MI. "The current studies in experimental sepsis suggest that cardiomyocytes interact with the powerful complement-derived C5a anaphylatoxin, resulting in release of cardiosuppressive cytokines that may be linked with defective cardiomyocyte function developing during sepsis."

To make their discovery, Ward and colleagues obtained specialized heart muscle cells, called "cardiomyocytes" (CMs), from normal rats and incubated them in the laboratory with C5a. They found that the cardiomyocyes released specialized immune cells, called cytokines (IL-6 and TNF alpha), in a time-dependent and dose-dependent manner. Sepsis was also induced in mice, and CMs isolated from these mice and examined in vitro. The scientists found that these cells spontaneously released a variety of cytokines, several of which appeared to have the potential to harm the heart. When other mice with beginning stages of sepsis were injected with an antibody to neutralize C5a, the activity of the heart-harming cytokines was reduced. Furthermore, when mice bred to lack receptors for C5a were subjected to sepsis, little or no spontaneous release of cytokines from heart cells occurred.

"Under the best circumstances, sepsis is unpredictable and difficult to treat," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journa1, "It's perhaps the most serious problem in emergency medicine and when sepsis affects the heart it moves from serious to grave. Now that we know that C5a is at least partly responsible, antibodies to C5a promise to get to the heart of the problem."

According to the National Institute of General Medical Sciences, NIH, Sepsis is a major challenge in the intensive care unit, where it is one of the leading causes of death. It is caused when immune chemicals released into the blood to combat infection trigger widespread inflammation, resulting in impaired blood flow, which damages the body's organs by depriving them of nutrients and oxygen. In the worst cases, the heart weakens and multiple organs—lungs, kidneys, liver—may quickly fail and the patient can die. Each year, severe sepsis strikes about 750,000 Americans, and as many as half die, which is more than the number of U.S. deaths from prostate cancer, breast cancer and AIDS combined.

Receive monthly highlights from The FASEB Journal by signing up at http://www.faseb.org/fjupdate.aspx or you can "like" the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Gelareh Atefi, Firas S. Zetoune, Todd J. Herron, José Jalife, Markus Bosmann, Rami Al-Aref, J. Vidya Sarma, and Peter A. Ward. Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. doi:10.1096/fj.11-183236 ; http://www.fasebj.org/content/early/2011/04/08/fj.11-183236.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>