Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New sepsis discovery goes straight to the heart to save lives

New research in the FASEB Journal suggests that intervening with neutralizing antibodies to C5a or its receptors could prevent development of cardiomyopathy in patients with sepsis

New research published online in The FASEB Journal ( details research in rats and mice that offers hope for stopping the devastating, and often fatal, effects of sepsis in humans. In the study, University of Michigan researchers show how neutralizing the effects of a key protein fragment, called C5a, used by the immune system to attract white blood cells may ultimately prevent heart failure.

"During sepsis, heart failure is a common feature of the later stages of the syndrome," said Peter A. Ward, M.D., a senior scientist involved in the work from the Department of Pathology at the University of Michigan Health Systems in Ann Arbor, MI. "The current studies in experimental sepsis suggest that cardiomyocytes interact with the powerful complement-derived C5a anaphylatoxin, resulting in release of cardiosuppressive cytokines that may be linked with defective cardiomyocyte function developing during sepsis."

To make their discovery, Ward and colleagues obtained specialized heart muscle cells, called "cardiomyocytes" (CMs), from normal rats and incubated them in the laboratory with C5a. They found that the cardiomyocyes released specialized immune cells, called cytokines (IL-6 and TNF alpha), in a time-dependent and dose-dependent manner. Sepsis was also induced in mice, and CMs isolated from these mice and examined in vitro. The scientists found that these cells spontaneously released a variety of cytokines, several of which appeared to have the potential to harm the heart. When other mice with beginning stages of sepsis were injected with an antibody to neutralize C5a, the activity of the heart-harming cytokines was reduced. Furthermore, when mice bred to lack receptors for C5a were subjected to sepsis, little or no spontaneous release of cytokines from heart cells occurred.

"Under the best circumstances, sepsis is unpredictable and difficult to treat," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journa1, "It's perhaps the most serious problem in emergency medicine and when sepsis affects the heart it moves from serious to grave. Now that we know that C5a is at least partly responsible, antibodies to C5a promise to get to the heart of the problem."

According to the National Institute of General Medical Sciences, NIH, Sepsis is a major challenge in the intensive care unit, where it is one of the leading causes of death. It is caused when immune chemicals released into the blood to combat infection trigger widespread inflammation, resulting in impaired blood flow, which damages the body's organs by depriving them of nutrients and oxygen. In the worst cases, the heart weakens and multiple organs—lungs, kidneys, liver—may quickly fail and the patient can die. Each year, severe sepsis strikes about 750,000 Americans, and as many as half die, which is more than the number of U.S. deaths from prostate cancer, breast cancer and AIDS combined.

Receive monthly highlights from The FASEB Journal by signing up at or you can "like" the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal ( is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Gelareh Atefi, Firas S. Zetoune, Todd J. Herron, José Jalife, Markus Bosmann, Rami Al-Aref, J. Vidya Sarma, and Peter A. Ward. Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. doi:10.1096/fj.11-183236 ;

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>