Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sensor Nanotechnology Developed by Stony Brook University Researchers Simplifies Disease Detection

01.10.2010
Researchers at Stony Brook University have developed a new sensor nanotechnology that could revolutionize personalized medicine by making it possible to instantly detect and monitor disease by simply exhaling once into a handheld device.

The new research, “Nanosensor Device for Breath Acetone Detection,” will be published by American Scientific Publishers in the October 2010 issue of Sensor Letters. According to lead researcher Perena Gouma, Ph.D., an Associate Professor and Director of the Center for Nanomaterials and Sensor Development in the Department of Materials Science and Engineering at Stony Brook University, and her research team, the new nanomedicine tool is designed to enable individuals to monitor signaling gas—such as acetone in exhaled breath—with their own inexpensive, non-invasive breath analyzer.

“This is a single breath analysis diagnostic tool for monitoring disease or metabolic functions that can be used to check cholesterol levels, diabetes, and even lung cancer;” explains Professor Gouma. “Lung cancer is a silent killer that can only be detected when it’s progressed vastly, but in the breath, markers can be identified that are an early signal.”

The ability to easily capture gases that detect disease early will empower individuals to take control of their own health. And it will simplify the process of monitoring diseases like diabetes. Presently, blood is required to monitor diabetes, but this new process will enable individuals to test themselves by simply breathing once into the device.

There are over 300 compounds in the breath, some of which are established indicators of disease. The only way to be able to use these indicators is with very selective sensors for a particular gas. “That’s where the breakthrough in the technology has been,” explains Gouma. “We have been able to make low-cost sensors that mark one particular gas or one particular family of gases and discriminate against another.”

In order to detect a particular disease, the specific sensors need to be identified. “For instance, if nitric oxide is important to asthma, we can detect nitric oxide. If acetone is important to diabetes, we can detect acetone,” notes Gouma. “It’s beyond the alcohol breath analyzer that people are familiar with that is non-selective.”

The project has been funded by the National Science Foundation and is presently in pre-clinical trials for use in diabetes.

In January 2010, Professor Gouma published research entitled “Chemical Sensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath,” in IEEE Sensors: Special Issue on Breath Analysis. A Fulbright Scholar, Dr. Gouma is a tenured Associate Professor in the Department of Materials Science and Engineering at Stony Brook University. She is associate editor of the Journal of the American Ceramic Society and serves on the editorial board of three additional journals. She has published over 100 research articles and several book chapters. For more information on Professor Gouma’s research, visit www.matscieng.sunysb.edu/faculty/gouma.html

| Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Materials Science Nanotechnology Sensor cholesterol level nitric oxide

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>