Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sensor Nanotechnology Developed by Stony Brook University Researchers Simplifies Disease Detection

01.10.2010
Researchers at Stony Brook University have developed a new sensor nanotechnology that could revolutionize personalized medicine by making it possible to instantly detect and monitor disease by simply exhaling once into a handheld device.

The new research, “Nanosensor Device for Breath Acetone Detection,” will be published by American Scientific Publishers in the October 2010 issue of Sensor Letters. According to lead researcher Perena Gouma, Ph.D., an Associate Professor and Director of the Center for Nanomaterials and Sensor Development in the Department of Materials Science and Engineering at Stony Brook University, and her research team, the new nanomedicine tool is designed to enable individuals to monitor signaling gas—such as acetone in exhaled breath—with their own inexpensive, non-invasive breath analyzer.

“This is a single breath analysis diagnostic tool for monitoring disease or metabolic functions that can be used to check cholesterol levels, diabetes, and even lung cancer;” explains Professor Gouma. “Lung cancer is a silent killer that can only be detected when it’s progressed vastly, but in the breath, markers can be identified that are an early signal.”

The ability to easily capture gases that detect disease early will empower individuals to take control of their own health. And it will simplify the process of monitoring diseases like diabetes. Presently, blood is required to monitor diabetes, but this new process will enable individuals to test themselves by simply breathing once into the device.

There are over 300 compounds in the breath, some of which are established indicators of disease. The only way to be able to use these indicators is with very selective sensors for a particular gas. “That’s where the breakthrough in the technology has been,” explains Gouma. “We have been able to make low-cost sensors that mark one particular gas or one particular family of gases and discriminate against another.”

In order to detect a particular disease, the specific sensors need to be identified. “For instance, if nitric oxide is important to asthma, we can detect nitric oxide. If acetone is important to diabetes, we can detect acetone,” notes Gouma. “It’s beyond the alcohol breath analyzer that people are familiar with that is non-selective.”

The project has been funded by the National Science Foundation and is presently in pre-clinical trials for use in diabetes.

In January 2010, Professor Gouma published research entitled “Chemical Sensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath,” in IEEE Sensors: Special Issue on Breath Analysis. A Fulbright Scholar, Dr. Gouma is a tenured Associate Professor in the Department of Materials Science and Engineering at Stony Brook University. She is associate editor of the Journal of the American Ceramic Society and serves on the editorial board of three additional journals. She has published over 100 research articles and several book chapters. For more information on Professor Gouma’s research, visit www.matscieng.sunysb.edu/faculty/gouma.html

| Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Materials Science Nanotechnology Sensor cholesterol level nitric oxide

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>