Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sensor Nanotechnology Developed by Stony Brook University Researchers Simplifies Disease Detection

01.10.2010
Researchers at Stony Brook University have developed a new sensor nanotechnology that could revolutionize personalized medicine by making it possible to instantly detect and monitor disease by simply exhaling once into a handheld device.

The new research, “Nanosensor Device for Breath Acetone Detection,” will be published by American Scientific Publishers in the October 2010 issue of Sensor Letters. According to lead researcher Perena Gouma, Ph.D., an Associate Professor and Director of the Center for Nanomaterials and Sensor Development in the Department of Materials Science and Engineering at Stony Brook University, and her research team, the new nanomedicine tool is designed to enable individuals to monitor signaling gas—such as acetone in exhaled breath—with their own inexpensive, non-invasive breath analyzer.

“This is a single breath analysis diagnostic tool for monitoring disease or metabolic functions that can be used to check cholesterol levels, diabetes, and even lung cancer;” explains Professor Gouma. “Lung cancer is a silent killer that can only be detected when it’s progressed vastly, but in the breath, markers can be identified that are an early signal.”

The ability to easily capture gases that detect disease early will empower individuals to take control of their own health. And it will simplify the process of monitoring diseases like diabetes. Presently, blood is required to monitor diabetes, but this new process will enable individuals to test themselves by simply breathing once into the device.

There are over 300 compounds in the breath, some of which are established indicators of disease. The only way to be able to use these indicators is with very selective sensors for a particular gas. “That’s where the breakthrough in the technology has been,” explains Gouma. “We have been able to make low-cost sensors that mark one particular gas or one particular family of gases and discriminate against another.”

In order to detect a particular disease, the specific sensors need to be identified. “For instance, if nitric oxide is important to asthma, we can detect nitric oxide. If acetone is important to diabetes, we can detect acetone,” notes Gouma. “It’s beyond the alcohol breath analyzer that people are familiar with that is non-selective.”

The project has been funded by the National Science Foundation and is presently in pre-clinical trials for use in diabetes.

In January 2010, Professor Gouma published research entitled “Chemical Sensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath,” in IEEE Sensors: Special Issue on Breath Analysis. A Fulbright Scholar, Dr. Gouma is a tenured Associate Professor in the Department of Materials Science and Engineering at Stony Brook University. She is associate editor of the Journal of the American Ceramic Society and serves on the editorial board of three additional journals. She has published over 100 research articles and several book chapters. For more information on Professor Gouma’s research, visit www.matscieng.sunysb.edu/faculty/gouma.html

| Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Materials Science Nanotechnology Sensor cholesterol level nitric oxide

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>